. AD-A130 227 A DISTRIBUTED SIGNAL PROCESSING ARCHITECTURE(U)
MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB
A EFIL T AL. 12 MAY 83 TR-637 ESD-TR-82-178
UNCLASSIFIED F19628-8@-C-8882 F/G 9/2

[y

—~
-

]

(I)
!

T
CPE NN

 EEE]

CIION S+ WIHIOTRY v KNSRI AA

L6

123 fiie

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

~

U N Y .

2

e

SR

g |
e

Y, e
Fa

e 2 a1

RS §
e

LBERAEA A
e

| @

v—w d Y T T T T T — . —w - — =, = =

The work reported in this document was performed at Lincoln Laboratory, a center
for research operated by Massachusetts Institute of Technology, with the support of
the Department of the Air Force under Contract F19628-80-C-0002,

This report may be reproduced to satisfy needs of U.S. Government agencies.

The views and conclusions contained in this document are those of the contractor and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the United States Government.

The Public Affairs Office has reviewed this report, and it is
releasable to the National Technical Information Service,
where it will be available to the general public, including
foreign nationals.

This technical report has been reviewed and is approved for publication.
FOR THE COMMANDER

Vi), At

Thomas J. Alpert, Major, USAF
Chief, ESD Lincoln Laboratory Project Office

Non-Lincoin Recipients
PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed.

A __

., -

|

B [1" f_{-.l'. a . ' .

’ -
PP

Ao oo oos o

...................

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

A DISTRIBUTED SIGNAL PROCESSING ARCHITECTURE

A.E. FILIP
$ Group 27
J.S. ARTHUR
Group 39
J.D. DRINAN
Group 28
A.H. HUNTOON
Group 24
D.E. KIRK
Naval Post Graduate School
J.G. VERLY
Group 27

TECHNICAL REPORT 637

12 MAY 1983

PP YT PV PIIY

e e e ee
‘ : L . ~. S Bt -y ‘..)
AN I R] ¢
M -e - N LR v L] 3
5 o

Approved for public release; distribution unlimited.

LEXINGTON MASSACHUSETTS

.UA’.A "-" - ."Q.' .‘.-
S S

e LT LT iTe T P. e e et e e e e .
A art. St SR S S . P T T
Pl W I, VA AP R WY - . P B

T R AN PN et et St Sate e A At S R d U] _
R T O T e L P P MR vy .‘.:]
'":.,1
3 .:
B

N

™ An architecture is descri for a multn-proeenor implementation of real-time
signal processnng algorithms. A tterfly" network is used to provide simultaneous,
conflict-free interprocessor communication for multi-dimensional eonvolutnon and
Fourier transformation. A hardware demom;nnon test-bed using four e proces—
sors was used to validate the concepts of) /dQnthm execution,” (2) conflict—
free data trmfm./a? distributed network control, (4) dynamic fault tolerance, and

. g—wndent:cal software in all processors.

/ _
TAccession For
TNTIS GRARI
DTIC TAB
Unacaownsed a
Juitlfllltlm___._————‘
By g
Distci)\ltuul .
Anncbnlty €ccas |
. - " Tiawail snd/or
pDist | 9pecial
| \
- ifi -
Lo i e e e T e e T S T T e T e T S T

ABSTRACT e e e e e e e e e e e e i

'Cbapter
I. INTRODUCTION & i it i ittt e et e

2. ARCHITECTURE . . . o v oo oo e s,

Introduction 0. 0.0
- Nodal Processors v v v v vt e e e
Butterfly Network
Timing and Fault Manager
Sparing Switch Network

3. BUTTERFLY NETWORK PROPERTIES

Introduction L e e e e e e e e e e e e e
Convolution i i e e e e e e e
Fast Fourier Transform (FFT)
Distributed Network Control.

4 DISP TEST-BED v e

Introduction L0 o e e e e e
Nodal Processors v v v v v v o v v v v v
Butterfly Switches
Sparing Switches 000,
Timing and Fault Manager
Multi-Processor FFT (MPFFT)
Manager and Nodal Processor Software
Software Development Tools e e e e e
Examples and Performance

5. SUMMARY o e e e e e e e

et et
.30 12073

)

P I N KR e,
PRI p-

¢ 'f"’

....................

o ey =, = Ceq - - - R .

(PP R i PRI - oy A W, L L e . S ST e e e .‘.j
Cu e S e e e (RN s LT T . R I A s

AU G, LR, DR, SO T PN P LRI R S PR S W S ST SRR S AP i, PR SR SR S PN L D LIPS A A AP AP S P I T W 4

AR A O A I AN A A N R e L N T W T ™

Appendix j
A. DERIVATION OF MULTI-PROCESSOR FFT COEFFICIENTS 51
Introduction00 s e e e e e e e 51
Internal Butterfly Weights 52
External Butterfly Weights 54
B. BUTTERFLY SWITCH CONTROL EQUATIONS 58
Introduction & it e e e e e e e e e e 58]
Rules and Equations 58 X
C. MULTI-PROCESSOR TIME-LINE T 63 '
Introduction 0 0 0 e e e e e e e e e 63 ;
Execution Phases 64 y
D. TRANSFER TABLES v ot ittt et et ee e 72 :
Introduction s e e e e e e e e e 72
Terminology (L it e e e e e e e e e e 72
Transfer Table Structure 74
Software e e e e e e e e e e e e e e e e e 75
E. MAILBOXES ¢ i i i i i i et b e e ot s o e e 76
F. RECONFIGURATION i i it et vt e v oo e e us 79
G. UTILITY SOFTWARE i i i ittt et v s n s v 82
Modifications to Motorola Versabug 82
Adjunct Programs e e e s e e e e e e e 82
REFERENCES i i i i e i e o e o o o s o ot o o e e o a 88
-V -

B e T T T T I N N Ty -y iy rr ey vy =< o Lt N A nd i T T R W T W N W T~

.......................

kL

VAV P _:'_"

i |

LIST OF TABLES

)
L e 0 .,

.

1. Comparison of Four, 2-D FFT Algorithms 14

AP .
P I R N ST,

Features of VMOIA Microcomputer e e e e e e e 20
Features of MC68000 Microprocessor « . « . 20

0

3 . A .
2'a"5%s"2'2'a’,

d$ w N

Butterfly Switch Control Modes 23
Nodal Processor Sparing Conventions 25
Measured Execution Times 48

Lines of Assembly Language Code 49

» Tae 3.
BTOCARN

.

Single-Processor FFT Coefficients 51

° @ N o

Format of Transfer Table « « ¢ ¢ v v v v o o & 74

10. Transfer Table Example 74

%2 4 dy" Yy e

ey

A&

o 8ol

(&)
[

L'-’-.." ‘.‘l-.l "i +

LA ¢

~-vii-

’ lalo¥g®,

T T T L e P T R St e R L P T O T S S -
A et Tt e e T T T T e e e et e e te et et et e e e e T e N T e S T e o e e N T -~

A
N EaS e T e e T T et e T e e . SERLARN
-V, SO LN, SN, . Sl ol . L. S, SRPE SU. SR YL TR SR TR Pl S Ve AR RS S RN TR PR, PR P, TR WV B,

LIST OF FIGURES
1. Distributed Signal Processor Architecture 3
2. Nodal Processor Block Diagram e e e e e e e 4
3. Eight-Port Butterfly Network s
4. Mean Time Between Failure 7
5. Typical BFN Paths for Convolution Data Transfer 9
6. Bight-Point FFT 11
7. 64-Point FFT on the DISP 12
8. Typical BFN Paths for FFT Data Transfers 13
9. Distributed Control with Destination Addressing 15
10 DISP Test-Bed ¢ ¢ i v v v vt st o oo 17
11. Block Diagram of DISP Test-Bed 19
12. Butterfly Switch e e e e e e e 21
13. Butterfly Switch Signals, 21
14. Butterfly Controller Block Diagram 24
15. Sparing Network for the DISP Test-Bed e 25
160 TFM Control Interface 27
17. Partitioned FFT Algorithm 29
18. Multi-Processor FFT Flowchart 32
19. Calling Sequence for Multi-processor FFT 33
20. Flowchart of Demonstration Package 35
21, Input Data Display 36
22. First Epoch (Pre-transfer) Network Configuration 38
-viii-
P T N A A e e T e e G T

N N PR A O A AR R A AR A C R A S S PR e b Sachncie e s o ot o S O SN
.................... hid et e - - -
4

K

i

K

1

J

d

.

Ll

At R DA DA Il A A A A A e A Frrtiv vt viview el e vy
!
23. Second Epoch (First Transfer) Network Configuration 39 -
24. Third Epoch (Second Transfer) Network Configuration 39 ﬂ
25. Result of Distributed 1-D FFT 40 '
26. Second Epoch (First Transfer) with P, “Faulty’ 41
27. Reconfiguration Messages 42 E
28. Multi-Processor FFT of Rectangular Pulse as B
29. Multi-Processor FFT of Linear FM Pulse 46
30. Thumbwh\eel Switch Imputs 65
31. Top-level Flowchart of Versabug Modification 66
32. Transfer Table Example o v v v v v v v v e oo e e 73
33. Communication and Synchronization Mailboxes 77
3. Mailbox Format v v o v et e e e e e e 77

35. Reconfiguration Example 81

=3
B

Chapter 1
INTRODUCTION

- 1.1 OVERVIEW

- The Distributed Signal Processor (DISP) is designed to perform real-time signal

. processing on large data sets. Potential applications for the DISP include image pro-
cessing (enhancement, restoration, segmentation, and coding), radar imaging, synthetic

aperture radar, and infrared imaging (passive or active). These applications share

three important characteristics. First, the data sets are large, generally multi-dimen-
- sional, with high computation rates. Second, the applications make extensive use of
s convolution and Fourier transformation algorithms. Finally, real-time signal process—
ing applications generally have a regular, well defined time-line. _

e ——— e

. These characteristics are reflected in the DISP architecture. The large memory
- and computation requirements (often above one hundred million real operations per
second) are beyond the ability of a single, programmable machine. (For comparison,
the Cray-1 is rated at eighty million operations per second.) A distributed architec-
ture, however, uses many nodal processors in parallel, which, in aggregate, can satisfy
. the memory and speed requirements of these applications. In addition, the distributed
\ architecture is modular so that the number of nodal processors can be varied to suit a

: particular application. -

Signal processing algorithms implemented on the DISP are divided into three
basic steps. First, the data set is equally divided among the nodal processors. Then
all nodal processors simultaneously perform the same operations on different data.
Finally, all nodal processors simultaneously exchange partially—processed data through
an interprocessor communication network. The second and third steps may be
repeated until the task is completed.

The practical utility of a distributed approach to signal processing hinges on the

selection of the interprocessor communication network. The dominance of convolu-

G tion and Fourier transform algorithms implies that the interprocessor network selected

% for the DISP must be very efficient in handling these algorithms. The DISP uses a

» network which supports the data transfer requirements of these algorithms with one

. hundred percent efficiency, i.e., all nodal processors can simultaneously transfer the

M necessary data among themselves without conflict. The same network also has an effi-
cient hardware realization with a simple distributed control strategy.

Another practical consideration for a distributed signal processing architecture is
software. In the DISP, the software development task is eased because of the focus on
. real-time signal processing (as opposed to data processing). The highly structured
4 time-line associated with these applications allows efficient, manual partitioning of
algorithms, and results in identical software in all of the nodal processors. It also

! avoids the need for an operating system in each node.

TR T RSN RSN, TOTT T Te e e e v vy
- . el o

There are several other advantages that are realized in a distrib.ied signal
processing architecture. The first advantage is one of economics — both initial cost and
life cycle cost. The initial cost of the DISP is reduced because of its extensive use of

e standard microprocessor chip sets in the nodes. These components exhibit a rapidly
i declining cost per function because of their wide-spread use in commercial applica-
tions. The life cycle cost of a DISP-based system is reduced because its architecture
uses large numbers of few board types which reduces the maintenance and logistic
support costs of the processor. The reliability of the DISP is enhanced for the same
reason: using large numbers of a few unique boards simplifies the introduction of
fault tolerance into the design.

rrorryYy
o v
LR)

A third advantage of the DISP approach is that of flexibility. While dedicated,
hardwired signal processors may provide a comparable computational capability, they
are unable to adapt to a changing mix of algorithms that frequently occurs as a sys-
tem moves from its inception to its use in the field. The DISP is capable of being
reprogrammed to satisfy the evolutionary needs of a system. This also extends the use-
ful life of the signal processor and contributes to a lower life cycle cost.

Finally, the microprocessors and their peripherals used in the DISP architecture
will rapidly benefit from technology transfer from commercial developments in Very-
Large-Scale-Integration (VLSI) and from the Very-High-Speed-Integrated—Circuit
(VHSIC) program sponsored by the Department of Defense. Commercial VLSI prod-
ucts will be directed toward expanding or supporting existing microprocessor product
lines. The large commercial market for these products insures a long-term commit-
ment to products which should be of direct benefit to the DISP. Similarly, compo-
nents now being developed for the VHSIC program are either improved microproces—
sors or components which can be integrated into a microprocessor-based design.

1.2 ORGANIZATION

" .pter 2 provides an overview of the main elements of the DISP architecture
including the nodal processors, the timing and fault manager, and the butterfly and
sparing networks. The properties of the butterfly network are examined in detail in
Chapter 3. Chapter 4 describes the DISP test-bed which was constructed to verify the
basic distributed signal processing concepts.

The appendices contain a variety of supporting material. Appendix A contains a
derivation of the multi~processor FFT coefficients. Appendix B contains the logical
equations describing the operation of the butterfly switch. Appendix C provides a
detailed description of the time-line when executing a one—dimensional, multi-proces—
sor FFT on the test-bed. The transfer tables used to control data transfers among
processors are described in Appendix D, while the mailbox concept used to pass con— .
trol and diagnostic information is described in Appendix E. Appendix F describes the
reconfiguration process in response to nodal processor faults. Finally, Appendix G
describes some of the utility software that was developed to support the operation of
the test-bed.

Chapter 2
ARCHITECTURE

2.1 INTRODUCTION

In the taxonomy of distributed processing systems, the DISP would be classified
as a single-instruction-multiple-data (SIMD) type machine. This is consistent with
the basic operating mode of the DISP wherein each nodal processor performs the
same operation on different data segments. However, the DISP is not limited to oper—
ate as a SIMD machine. The butterfly network will also support "multi-SIMD" opera—
tion in which groups of processors operate as individual SIMD machines. Further, if
"group’ is defined as a single nodal processor, then the DISP becomes a multiple-in—
struction-multiple-data (MIMD) machine.

As shown in Figure 1, the major architectural features of the DISP are: (1) a set
of nodal processors, (2) a '"butterfly' interconnection network, (3) a timing and fault
manager, and (4) a sparing switch network. These subsystems are described in the fol-
lowing sections.

Q 0
- Po e
P
3 log, P SWITCHES
e P, el ':
| 2P SWITCHES :.
| .
| 3
Y
I WY
1Y
- > R
P P»s-l i ';1
SPARING NET BUTTERFLY NET E
3 -Z.
> TIMING AND FAULT MANAGER _':
3

Fig. 1. Distributed Signal Processor Architecture

A e e T e e e

el e e s el e el aa el sl e ala e s st el el ;2 tial A al A A AL Z A Al ale il s

rrTTT———" ——

2.2 NODAL PROCESSORS

Figure 1 shows a total of P+S programmable nodal processors (NP) connected
to the sparing switch network. The processors are completely independent of one
another. There is no shared memory or common clock in the DISP which would con-
stitute a reliability choke point. Only P of the processors are active at one time, with
S processors available as warm spares. This arrangement yields substantial improve-
ment in the mean time between failure (MTBF) for a very modest increase in total
hardware. (Section 2.5))

Each nodal processor contains a triad of processors plus local memory as shown
in Figure 2. The elements of the triad are: (1) a nodal manager (NM) which oversees
the operation of the node; (2) a signal processor (SP) which provides the high-speed
arithmetic capability in the node; (3) the input—output processor (IOP) which manages
the I/0 traffic between the node and the butterfly network and/or the outside world.

Lads an 4

3
S OUTSIDE BUTTERFLY
4 WORLD NETWORK
SIGNAL 170
PROC'R MEMORY PROC'R

NODAL
MANAGER

0

TIMING AND
FAULT MANAGER

Fig. 2. Nodal Processor Block Diagram

While the modest computational load on the NM can be satisfied with a stan-
dard microprocessor (e.g., MC68000) plus support hardware, the SP and IOP require
more sophistication. The SP is currently envisioned as a bit-slice microcomputer
(e.g., AMD 29500 family) which is capable of performing a real operation (multiply
or add) in 80-100 nsec. The IOP is currently viewed as a collection of DMA (Direct
Memory Access) controllers, perhaps augmented with AMD’s 29116 controller for
address calculation.

In addition to the processor triad, the local memory will be organized as a mul-
ti-segmented memory containing a total of 128 Kbytes. The total number of inte—
grated circuits (ICs) required for the nodal processor is predicted to be approximately
400.

PN S AP BN R, P A S RPN P W VY WY SN SRy S W T ST R i S TP N U D PR W TR TP U U I S AN Y D PRy

hd B AN 2
" vy
g~ AR

R SN ae au Sh Bl o
IR L

2.3 BUTTERFLY NETWORK

The butterfly network (BFN) occupies the right-most block of Figure 1, and
provides the means for interprocessor communication in the DISP. It consists of a set
of two-input-two—output switches that can assume cither of two states (crossed or
straight) as shown in Figure 1. The network contains a total of P/2 logP such
switches.! The interconnection of the switches for eight active processors is shown in
Figure 3. Note the strong resemblance of the interconnection diagram to the flow dia-
gram of the standard, radix-2, fast Fourier transform algorithm. This similarity not
only prompted the name "butterfly’ for the network, but it also provided the intuitive
basis for the (correct) assertion that the network can support distributed FFT calcula-
tions without conflict.

107775-N-01

000 000
001 001
010 010
011 > 011
100 - 100
101 mm
110 110
1110- 1M1

Fig. 3. Eight-Port Butterfly Network

The butterfly network was selected for use in the DISP for three reasons. First,
the BFN can provide simultaneous, conflict-free communication among all nodal pro-
cessors for the signal processing algorithms of interest. Second, the BFN can be cont-
rolled through a simple, distributed control algorithm. Finally, the BFN has an effi-
cient hardware implementation.

The properties of the BFN will be described in detail in Chapter 3.

! Unless otherwise stated, all logarithms are base two (2).

. L ot .
L. L-_‘.‘ AR
— PO >

2.4 TIMING AND FAULT MANAGER

The timing and fault manager (TFM) shown at the bottom of Figure 1 is
responsible for: (1) interpreting fault detection reports and reconfiguring the sparing
switches accordingly, and (2) task synchronization of the nodal processors. It will be
implemented by using the nodal manager hardware portion of the nodal processor
design.

The fault detection and interpretation function requires low-rate, bi-directional
communication with the nodal processors which is provided by a serial link. The
nodal processors use the serial link to inform the TFM of diagnostic results, while the
TFM uses the link to assign a logical identity to each processor. The mapping
between logical and physical identity will change dynamically during system operation
based upon diagnostic results. The TFM must also have a control input to the sparing
switch network to determine which of the P+S nodal processors actually have access
to the butterfly network.

The second function of task synchronization is also achieved by means of the
serial link described above. Task synchronization is occasionally required at system
start-up, or after system reconfiguration. Note, however, that because of the self syn—
chronizing capability of the butterfly network, the DISP would continue to operate in
the event of a TFM failure until the system encountered an additional fault in one of
the nodal processors.

2.5 SPARING SY/ITCH NETWORK

The sparing switch network shown in the middle of Figure 1 implements two
functions in the DISP. It controls which of the P+S nodal processors have access to
the butterfly network. It also houses the hardware for routing data between the P
active nodal processors and the outside world. There are 2P sparing switches. On the
input side of the BFN, the switches provide a (S+1):1 multiplexer function , while on
the output side they provide a 1:(S+1) demultiplexer function.

The sparing switch provides the basic fault tolerance capability for the DISP.
By adding a small number (S) of spare processors to the system, significant improve-
ments in the system MTBF can be obtained. Figure 4 illustrates the predicted MTBF
versus the number of spare nodal processors for systems with 4, 32, and 256 active
processors. The results are based upon the byte-wide data path used in the DISP
test-bed, with an assumed IC failure rate of once per ten million hours. The curves
take into account the varying complexity of the sparing switch and butterfly net as the
number of active and spare processors changes. Each nodal processor is assumed to
contain 400 ICs, while each byte-wide butterfly switch contains 8 ICs based on the
test-bed design described below. The sparing switches each contain 0, 6, 12, or 18 ICs
depending on the number of spare processors. Note that adding more than two spares
has only marginal benefit.

‘
K
-

U
-
-1

Kl

‘

.';

) SRR LI

LSRR

LR s

R T —
Cteler, 2

oo LT T
'y ,.‘.n_t_

- .
S 5
A «

2, r
T o

Mree (hrs)

e

m

R A AR

Chapter 3
BUTTERFLY NETWORK PROPERTIES

3.1 INTRODUCTION

The butterfly network used in the DISP owes its name to the pictorial and topo- -
logical similarity it shares with the radix-2 butterfly used in the fast Fourier transform . a
(FFT) algorithm. The correspondence between the butterfly network and the FFT
flow diagram extends beyond their graphic similarity. As we shall see in Section 3.3, N
the butterfly network can support simuitaneous, conflict-free data transfers among all 4
nodal processors during the execution of the FFT. However, before describing the .
properties of this network, we shall review its genealogy and topological equivalents.

The origin of the butterfly network can be traced back almost thirty years to ?
Clos’s pioneering work in multi-stage switching networks for use in telephone systems 3
[1). A diagram of such a network is very similar to the flow diagram of a mixed-radix
FFT algorithm [2]). They are more general than a butterfly net because they will sup-
port arbitrary permutations among the nodal processors. In 1964, Benes [3] described
a highly regular network based on the two-state butterfly switch that is obtained by
reflecting the BFN about its last stage. The Benes net contains s total of
P(log(P)-0.5) butterfly switches, and, like Clos’s network, it supports arbitrary permu-
tations. These networks never achieved widespread use because of the difficulty in
devising efficient control algorithms. For example, Opferman and Wu [4] described a
control algorithm for the Benes net which requires on the order of PlogP operations
to set the switches to achieve a desired permutation.

During the mid-seventies, a8 number of papers were published describing net-
works that are topologically equivalent to the BFN, such as the omega net [5], the flip
net [6], the indirect binary n-cube [7], and others [8-12]). Rettberg, et al [13], were
apparently the first to use the term "butterfly network'. Subsequently, many authors
[14-18] noted the topologncal equivalence of these mtchm; networks. Thus, our use
of the butterfly network in computer communications is not unique. What is unique is

its application to real-time signal processing.
Acompnﬁmofthenumberofdisﬁnctconnecﬁmmong?ptooeuonﬂl) !

with the number of states attainable in the BFN (P?/?) reveals that the BFN cannot -
implement a large fraction of the pomble permutations. The possible conflicts that E
occur throughout the network result in an average normalized bandwidth or efficiency

that is substantially less than unity [19,20]. However, this limitation exists orly for R
those applications where communication among processors occurs randomly as in a ;}

data processing or data communication context. Designers have tried to mitigate this
problem by adding a store-and-forward capability into the network switches. How-
ever, signal processing algorithms, such as multi-dimensional convolution and Fourier
transformation, tend to have a very simple and regular structure which requires many
fewer connections. The result [7,15] is that the BFN has an efficiency of unity for the

r
-
’
i
|
!
\1
3
!i
D)
.'-1
.
s
T R R I .- . . e e e e T T e T oM et
T ST G Sl WPV I UL LIPS e P T T PP L AL T T S PP S A ST AT WA S W WP Iy I, BTN, NP S T O

signal processing algorithms of interest, and we can thus use a very simple,
memoryless, circuit-switched network structure.

Potential DISP applications are dominated by multi-dimensional convolution q
(correlation) and Fourier transformation. For that reason, the following two sections 'S
describe how these algorithms would be implemented on the DISP with the butterfly
interconnection network. Finally, Section 3.4 describes the distributed control feature
of the BFN. A detailed description of the hardware implementation of the BFN will
be deferred to Chapter 4.

3.2 CONVOLUTION

Consider one—-dimensional convolution (or correlation). Assume that an N-point
sequence is to be convolved with a Q-sample impulse response, where Q << N. (If the
last condition isn’t satisfied, then fast convolution using FFTs is more efficient.) If the
N samples are equally distributed among the P active processors, the convolution cal-
culation can proceed in parallel in all P processors until the Q-point kernel has been
shifted to the end of the data resident in each processor. At that time, in order to
complete the calculation, Q-1 points must be transferred from processor i to processor
[i+1] where the brackets indicate modulo-P and i ranges from O to P-1. This is simply
a simultaneous, cyclic shift of the data by one processor as shown in Figure 5. After .
the data transfer, the convolution on the remaining Q points in each processor is com- ¢
pleted. Note that if a linear (as opposed to circular) convolution is desired, then the
“end" processor, P, does not continue its calculation after the data transfer.

DRI & & VRIS

Fig. 5. Typical BFN Paths for Convolution Data Transfer

_____ B R - DI S - o . M t R O T T e T T Tt
e don ol i e P SRR SN Sl Wl W S S SN S W Y S G SR Sl G P A T WY SRR T S Yy . 0. S N ;.;g_)_.-‘-_'-_j

...............

The same data transfer strategy extends directly to multi-dimensional convolu-
tion (or correlation). Once again, a cyclic shift of the data by one processor is
required, but now Q-1 rows (two dimensions) or planes (three dimensions) are trans—
ferred instead of Q-1 points.

3.3 FAST FOURIER TRANSFORM (FFT)
3.3.1 One-dimensional FFT

The data transfers through the BFN needed to support FFTs are slightly more
involved than for convolution. Again assume that an N-sample sequence has been
equally divided (after bit-reversal) among the P processors. As shown in Figure 6 for
an 8-point FFT, a standard radix-2, decimation-in-time, in—place FFT algorithm
combines data samples that are separated by 1, 2, 4, 8, etc. address locations as one
moves through the stages of the algorithm. Eventually, the required address separation
will exceed the size of the data block held by a single processor, and a data exchange
must be executed. The total number of transfers needed is independent of N and is
equal to logP.

-
g
R
‘1
Al
Al
hl
d
g
X
g
N
o

Figure 7 illustrates how four processors (P, - P,) would execute a 64-point,
one—dimensional FFT. After dividing the data equslly among the four nodal proces-
sors, the first four stages of the six-stage FFT can be computed locally. At this point,
the required data separation (16 samples) exceeds the data contained within a single
processor and a transfer will have to occur.

The data transfer has a very regular structure. As shown in Figure 7, the last
half of the 16 samples in processor 0 are exchanged with the first half of the data in
processor 1. Simultaneously, processors 2 and 3 exchange half of their data. After the
data transfers are completed, the fifth stage of the FFT can be computed. Once again,
a data transfer is needed before proceeding. The second transfer is similar to the first
in that processors 0 and 2 exchange half of their data while processors 1 and 3 simul-
taneously exchange half of theirs. After the transfers, the sixth and final stage of the
64—point FFT is completed.

Note that upon completion of the calculation, the data is not normally ordered
as one would expect with a single processor FFT algorithm. Instead, the data is in
pseudo—normsl" order. For most applications, this is of no consequence since the data
can be read in sequence from P,..P,, P...P, If necessary, the data can be restored
to normal order with additional passes througil the BFN.

The general characteristics of the FFT data transfers are: (1) logP transfers are
needed, and (2) each transfer involves half of the data samples in a pairwise exchange
that can be described in terms of the "cube' function defined by Siegel [21]. Figure 8
illustrates the BFN configuration to support pairwise exchange between processors 0
and 2 in an eight-processor network.

-10 -

A BUTTERFLY IS

Xm (P) Xm=1 (P) = Xm (P) + WiXm (q)
W, '
X, (q) ¢ Xm=1 (@) = Xm (P) - WrXe (qQ)

WHERE W, = ¢l @M’ 116830-N-01

Fig. 6. Eight-Point FFT

r
g
¥
}
p
b
B,
'
2
b
I
4
),
-

2y

T 7

RIS

5
-

LY
hY

AN N
N MY AT s
)" "..' I‘.l.
. Crr AT RN

.....

TRANSFER 1 TRANSFER 2

' ' |

0,---7, 8.---15 0,---7, 16,---23 0,---7, 32,---39

---15, 24,---31 <715, 40,---47
AN

32,"'39, 40,--'47 32,"‘ ’ 481---55) -°23l 48,"'55
N\

.................
............

48,---55,_56~"63 ---4277566,---63] 25--31. 56,---63

STAGES 1-4 STAGE 5 STAGE 6

Fig. 7. 64-Point FFT on the DISP

-12 -

.................

TN T T T PRdi et gbes aoat Sridh ol Shdi el Jiutl int Wi AR St s e i Sh e gt e b mee b Sk A AT SnilAnd Aad
0 - - . - M . - . - LA = r s - * N - . - - . DR -

[107775-N02]

000 Q 000 :

001 001 3
4

0100 010 .

0110 —— 011 1

100 O 100

1010 101

110 O 110

1110 > 111

Fig. 8. Typical BFN Paths for FFT Data Transfers

3.3.2 Multi-dimensional FFT

When considering multi-dimensional problems, the FFT is richer than convolu-
tion in that new transfer strategies become available. Table 1 compares four different
algorithms for computing a two-dimensional FFT on the DISP [22]). The simplest
approach, called the sequential row—column (SRC), is to divide the NxN data field
equally by row among the P processors 30 that each processor contains N x N/P
samples. The FFT of the individual rows can be computed internally in each proces-
sor. The column transforms, however, require the same data transfers as described in
the one-dimensional case. Once again, there are log(P) transfers, and at each transfer
half of the data field is moved through the BFN.

An algorithm called the interleaved row—column (IRC) [23] orders the calcula-
tion somewhat differently. In its simplest form, one computes the first stage of all the
rows, then the first stage of all the columns, then the second stage of all the rows, and
so on. A more useful form of the algorithm first computes the internal stages of all
the columns. A transfer of several rows is initiated while the entire transform of the
stationary rows is computed. The result is that data transfers can be spread over a
much longer interval than for the SRC with a consequent reduction in data rate
through the BFN.

PRITAA RN oo

A third algorithm, called the vector-radix (VR) [24] offers another alternative
that not only reduces the data transfer rate, but also the computation rate.

-13 -

’

Finally, a fourth algorithm for the two—dimensional FFT is based upon doing J
"corner-turning’ (CT) with the network. As with the SRC, the individual nodal pro- .
cessors first perform the row transforms. Then, P-1 passes are made through the net-
work to effect the "corner turn' or matrix transpose operation. Each transfer involves
(N/P)?® points per processor. After the transfers are complete, the nodal processors
compute the column transforms.

TABLE 1
COMPARISON OF FOUR, 2-D FFT ALGORITHMS

SRC IRC VR CT -
No. Transfer Epochs’ q q q P-1
No. Words/Epoch/ N2/2P N?/2P N?/2P (N/P)?
Proc'r
Normalized Time? Sq/r .5(1+q/1) q/r .5
for Net 1/0
Normalized Net? 1 q/(r+q) 2/3 2(P-1)/rP
Bandwidth

! q=log(P); r=log(N)

2 One time unit equals the time to compute all butterflies
for an NxN field divided by the number of processors.

3 Normalization constant equals radix-2 butterfly
computation time.

U W L l‘. .'-'- N

3.4 DISTRIBUTED NETWORK CONTROL

As mentioned in Section 3.1, the precursors to the butterfly network were sel-
dom used because of the difficulty in determining the setting of the individual switches.
Indeed, the Benes net uses a separate minicomputer solely for this purpose. Such an
approach for the DISP is unacceptable from a reliability standpoint because a single-
point failure in the control minicomputer would shut down the entire network.

Fortunately, as several authors have noted, {7,10,14,17] the butterfly network
lends itself to a simple, distributed control algorithm. The algorithm is based upon the
fact that there are as many columns or stages in the butterfly network as there are bits
in the binary representation of the nodal processor address. Thus, as shown in Figure
3 for an cight-node system, three bits are needed to describe a nodal address, which is
equal to the number of stages in the network.

-14 -

T e e T . T e e

One implementation, termed destination addressing, is shown in Figure 9. In this
case, each bit in the binary representation of the destination address is examined by the
corresponding stage of the BFN. If the bit is '0', then the upper switch output is
selected. If the bit is "1", the lower output is selected.

000 O— — 000

001 001 4

010 010
%

o1 011 é

100 - 100

101 101

110 110

1110— 1

DESTINATION ADDRESSING

UPPER SWITCH OUTPUT — O
LOWER SWITCH OUTPUT — 1

Fig. 9. Distributed Control with Destination Addressing

With a slight modification, this algorithm can be described more naturally in -3
terms of the "crossed' and "straight" states of the butterfly switch element. First, a mod- ‘!
ified address is generated by computing the Exclusive-OR of the destination address L

and source address. Once again, each bit of the modified address is examined by the
corresponding stage of the BFN. If the bit is "I", then the switch assumes the crossed
state. If the bit is '0’, then the "straight" state is selected.

The modified address form of the distributed control algorithm has an addi-
tional advantage in that the destination processor is able to recover the source address
by computing the Exclusive—~OR of the received address with its own address. Thus the

~15 -

v o et el i B 2 S A et g B A aun vl et ML N N ol et et e "

destination processor can verify that the appropriate source processor is trying to

establish a link through the BFN, which is useful diagnostic information.

~16 -

RPN SV S PN SE00 SO SR R S ISP . WS N ARl S A SR G SR GNP]

P P

4

o

Chapter 4
DISP TEST-BED

4.1 INTRODUCTION

The value of any new technology, like DISP, can best be measured if a full sys-
tem is built and operated in a real-time environment. However, there are fundamental
concepts which can be verified with a mini-DISP system and which can be extrapo-
lated to a full-size system. For this reason, a DISP test-bed was implemented at the
Laboratory (Figure 10).

Fig. 10. DISP Test-Bed

-17-

R LS
LR TS N Wi Uit Sy SRy WU Sl . P TPAE LY et e A PV IR S AU S Y R R S S S Sl

O . § AW

-
PR

RO §

N - TN

Y
Y C e

e Aag3

— Ty
[t s, .

AR A B et B IS ~ Aottt A nti Bl Jaad Mt Bl iy A Bt AdREL AU Aehan Sl M S SRSk SSuNCIMSES M Sebeh ata

The test-bed provides a means for validating five DISP concepts: (1)
simultaneous, parallel algorithm execution, (2) simultaneous, conflict—free data trans-
fer, (3) distributed network control, (4) dynamic fault detection and reconfiguration,
and (5) identical software in all nodes. It does not currently include real-time compu-
tation or 1/0 capability, although these are planned for the future.

Most of the hardware and all of the support software were purchased from
Motorola Inc. Notable hardware exceptions are the butterfly network and the sparing—
switch networks which were designed at the Laboratory using commercial integrated
circuits. Figure 11 shows the block diagram of the test-bed. The block diagram is
equivalent to Figure 1 with P=4, and S=1. That is, there are four active nodal proces—
sors and one spare processor. Consequently, the BFN has four butterfly switches
arranged in two columns or stages. All nodal processors and the TFM are commer-
cial, single-board computers (Motorola VMO1A Versamodules). The VMOIA assumes
the role of nodal manager, I/O processor, and signal processor, albeit at greatly
reduced speed. Parallel ports on the VMOIA computers connect all nodes to the BFN
via the sparing switch network. Control for the sparing switch network comes from
another VMO1A acting as timing-and-fault manager (TFM).

The Laboratory’s Amdahl 470 computer was used to download data sets and
programs into the VMO1As and to upload computed results for display. No separate
I/0 hardware was built for handling data sets to and from the outside world in real-
time.

Before a distributed FFT example could be demonstrated, a number of tests had
to be developed for the VMO1As. For example, tests were developed to validate the
performance of each port, bus, timer and control on the Motorola boards. Similarly,
tests were developed to make proper use of Motorola’s on-board Monitor program
(VERSABUG). Finally, a series of maintenance tests and techniques were developed,
first to permit step~by-step subsystem integration from 1 to 5 nodal processors with
the network and TFM, and second to debug hardware and software flaws in the sys—
tem. There is a new dimension involved with debugging systems of multiple general-
purpose computers that does not exist with a single computer, and testing techniques
which are developed on the test-bed are probably as valuable as the other DISP con-
cepts verified in the test-bed.

The following sections describe the DISP test-bed in detail. Sections 4.2-4.5
describe the hardware, including the nodal processors, butterfly switch, sparing
switches, and timing-and-fault manager. Sections 4.6—4.8 describe the software devel-
oped for the test-bed, including the one—dimensional, multi-processor FFT, the TFM
and NP programs, and the software development tools. Finally, Section 4.9 contains
examples of one—dimensional, multi-processor FFT calculations performed on the
test-bed, and also presents some performance measures for the test-bed.

- 18 -

2

el e T ’ L A T T
PRSP R T By A S I

- - .
R S

. 3§ PR

A, NN

et

d
L

P

i Jrt.0 vt ren JEan B wh J-th g or- & At el i an et ec i b S C At St i A it At S T T T W Y T X W TR T W S W W W W T W w
....... B PG - BEARMAE NN A . 3 ™ Eaaiha il N A

115832-N-02
BUTTERFLY-SWITCH NETWORK .
1 l t l 1 l t CONTROL
SPARING SWITCH ‘_1
1 1 l t Y I \ t l
VMO1A VMO1A VMO1A VMO1A VMO1A
o 1 2 3 SPARE
t t Versabus i 1 t
LOAD
AND
TEST
MEMORY
SERIAL VERSABUS SERIAL
AMDAHL PORT NO. 2 PORT No. 1
TERMINALS [470 e pue] [VMO'1A] TERMINAL
COMPUTER

Fig. 11. Block Diagram of DISP Test-Bed

42 NODAL PROCESSORS

A commercial, single-board computer was used as the NP and TFM. The
Motorola VMO1A microcomputer was selected because it contains a reasonable com-
bination of processor (MC68000), on-board memory, and I/O capabilities. In addi-
tion, other groups in the Laboratory were already using the board, and this proved to
be 2 valuable source of experience and software. The main features of the VMO1A are
listed in Table 2, while the features of the MC68000 are listed in Table 3.

The VMOI1A nodal processors currently perform the signal processing function
(non real-time) in addition to nodal 1I/0 and nodal management duties. The next-

-19 -

'
A Y TR
PP PR R
L""_.zl_ljn I

PP DU NP U -) P it i dinen i admnali & et TP EPU U S GO USRI Sy SR P S Py DU §

™1

;'_',' generation NP implementation will include enhanced network and “outside world" 1/0 i
\‘ capability, allowing the VMO1A board within each multi-board NP to function more -
! nearly as a true nodal manager. The addition of real-time nodal signal processing \;

capability is planned as a future enhancement.

TABLE 2

s s sm e e
o PR
54 FEONATIRNCATAL

FEATURES OF VM01A MICROCOMPUTER

MC68000 MPU (8 MHz)

Versabus interface

32 Kbyte dynamic RAM with byte parity
ROM/EPROM capacity to 64 Kbytes

Two serial 1/0 ports (RS-232C, R§-422)

Four parallel byte-wide 1/0 ports, plus handshake lines
One triple 16-bit programmable timer
EPROM-resident monitor/debugger (Versabug)

1

TABLE 3
FEATURES OF MC68000 MICROPROCESSOR

16/32-bit (external/internal) general purpose architecture
16 Mbyte direct addressing range

17 multi-function 32-bit registers

56 instruction types

Operations on 5 data types

Memory-mapped 1/0

14 addressing modes

43 BUTTERFLY SWITCHES

Each butterfly switch includes a controller and the requisite crosspoint steering
for both data and control signals in accordance with its straight/crossed convention.
Figure 12 shows the two defined states of the butterfly switch along with the corre-
sponding logical model. The steering convention is STATE=1 for crossed connections ‘
and STATE=0 for straight connections. This butterfly switch definition does not
include broadcast capability.

While data passes through the network uni-directionally, the network control
signals traverse the network in both directions. These controls include separate request
and acknowledge signals for network configuration and for data exchange, all of
which are subject to butterfly steering. Therefore, a byte—wide butterfly switch would
require at least 48 input—output pins, as indicated in Figure 13.

- 20 -

gt 2t & o re v S T Jaen i nin S AR v sua e Al Juall S AN M P ML SRS S et At s Sndh L AGECRERL S N N s

[zErresl. i
UPPERi 0 :
\\‘ ,,’ [1 R
)\ -
” AN
PN Lower,. 4440 ;
STATE ‘
(a) CONCEPTUAL DIAGRAM {b) LOGICAL MODEL _.

Fig. 12. Butterfly Switch

REQAU, e j=—-= REQAU,
ACKAU°.4— e ACKAU,
DATAU :T_") I> DATAU
REQDU, e p=—— REQDU
ACKDU, ~a=r e ACKDU,
REQAL, emmmeip- L—-— REQAL,
ACKAL =t — ACKAL,
DATAL _—_r_'j T DATAL,
REQDL, e f—>- REQDL
ACKDL. e et ACKDL]

Fig. 13. Butterfly Switch Signals

-21-

e .

e e e Tt . PRI L. . . Tt e e Co e .t e e .
e i Bl B B 2 L - - -4 - - . AP LAY CEDNP UL Wiy SU S S PRS- . PR Wl VLINE WORY IO SRy L T el

A AR e T AR e AT I AU 20 SN B S At i Shue JBam e ——y

The signal naming conventions of Figure 13 delineate request, acknowledge,
address and data lines with the appropriate suffix. In general, any signal is denoted as
wwwxyz, where www=REQ or ACK for request or acknowledge, x=A or D for address
or data, y=U or L for upper or lower, and z=i or o for input or output. For example,
REQAU, is an upper channel network address input request, whereas ACKDL is a
lower channel data transfer acknowledge output.

The four-node butterfly network in the test-bed contains four butterfly switches
which operate asynchronously with respect to each other and also with respect to the
attached NPs. Each source processor (supplying data to the network) secures its path
through the network using the destination addressing technique described in Section
3.4. After the network configuration process is complete, all processor network con-
nections are maintained by not changing the address handshake lines until another
network setting is needed.

N
N
"
"y
e

i
b

4.3.1 Butterfly Switch Control

The network control mechanism, while described in terms of a simple four-node
network, can be extended to distributed systems having large numbers of NPs. Sepa-
rate addressing and data transfer time intervals are assumed, and it is expected that the
time invested in addressing the network will usually be amortized over extended peri-
ods of data transfer activity. When the network is being addressed, the configuration of
butterfly switches occurs level-by-level across the network in a ripple fashion. The
control logic within each butterfly switch stores the STATE of the switch (straight vs
crossed). With the aid of some wait loops within the intelligent 1/0 ports of attached
processors, it is also possible to distinguish between a network address request which
has had inadequate time for completion, and a "drop—out' fault, wherein some but-
terfly switch has inadvertently changed state after having been configured.

The network addressing process depends on hardware which responds to specific
REQA and ACKA edge transitions and a round-trip "ripple-through" of control sig-
nals, where request signals propagate left-to-right from the processor output ports,
followed by right-to-left propagation of acknowledge signals initiated at the processor
input ports. Because a network of virtually any size may be constructed (subject to
delay constraints) using identical butterfly switches as building blocks, a description of
the operation of a single butterfly switch and its control logic is sufficient.

The four control modes for the butterfly switch are determined by the address
request and acknowledge signals as shown in Table 4. In IDLE mode, all processor
output ports place a destination address on the data bus and then raise their request
lines. Level by level across the network enroute to the processor input ports, each but—
terfly switch extracts an address bit per channel from the data bus. From the perspec—
tive of an individual butterfly switch, an upper or lower channel address bit (AU or
AL) in the presence of an address request (REQAU, or REQAL) is interpreted as a
“straight request’ if A, =0 and a "cross request" if Ay, =1. If the butterfly switch is
in IDLE mode prior to the address request, its internal STATE register will be
updated, allowing requests to propagate further into the network.?

1 Some additional restrictions on the updating of butterfly switches will be discussed
later in conjunction with the controller design.

-22-

;4‘4'4;‘.‘1 ,J_';\“;.;J.'I_".‘-.l: AL L

PRAFTL S g Jr B AP S A Mt v el handl S St S Mgt i P A PR e S ek S M s A i Chabt Sk SRl o 4 ‘,]

As noted in Table 4, a butterfly switch channel is in ADDRESS mode when a
request has caused a STATE update, but no corresponding acknowledge has arrived.
As individual source processor requests cross the network and arrive at the destination
ports of recipient processors, address acknowledge signals (ACKA) are issued which
traverse the just—established paths through the network (from right to left) back to the
NP source ports. Now, from the perspective of the source ports, ACKA=REQA=1,
and the network is in DATA mode and available. Note that the data and control lines
are steered in accordance with each butterfly switch setting, and are intended to be
active in DATA mode.

TABLE 4

BUTTERFLY SWITCH CONTROL MODES

ACKA REQA MODE
0 0 IDLE
0 i ADDRESS
1 1 DATA
1 0 RELEASE

To release the network after use, all processor source ports clear their request
lines, and the REQA falling edge propagates rightward through the network to the
processor destination ports without altering butterfly switch settings. To maintain con-
tinuity in RELEASE mode, we must pass the initiative for network disconnection to
the destination side of the network. Accordingly, resetting REQA from DATA mode
causes the destination ports to clear ACKA, and the falling edge transition travels to
the source processor side of the network, completing the return to IDLE mode.

Finally, it is worth noting that although all processors typically issue address
requests to the network at about the same time, they are not required to do so. If, for
example, the upper channel of a butterfly switch receives an address request while the
lower channel is still in DATA mode, the new request will be forwarded if a STATE
change (crossed or straight) is not needed. Otherwise, the butterfly switch will be con—
sidered '"busy’ until the lower channel’s mode reverts to IDLE, and its connection is
no longer needed. The implementation of the butterfly controller is described below.

4.3.2 Butterfly Controller Implementation

All butterfly switches must operate in accordance with the network control
modes of Table 4. Each butterfly controller within the 4-node network is a self-con-
tained state machine which operates synchronously within itself, but asynchronously
with respect to other network nodes and switches. As shown in Figure 14, the control-
ler employs an internal feedback loop, and consists of an oscillator, input and output
registers and a combinatorial logic section. The logic of Figure 14 is currently imple-
mented as a 2Kx8 bipolar PROM, which permits a full controller implementation

-23 -

%

o
AT EE P P - St P e R , . . - L .
IS WV Sl R S N S S S PP VAR YR DPULI VAL I W VR VPRE WY VR SR ST RPN W e R P U SN UL PLEPAEN

using four chips. The controller’s operation is described in Appendix B in terms of a
set of operating rules and twelve resultant logical equations.

"
i
¥
|

: osc
‘CLK
r0qay. i | &_—
i N ACKAU.
ackaui—> P e s 'CLK .
w—s] U A |
(0q0],] | oAl] o 8 L——o—o- REQAU
ackal'_—.. - R _—Agxil__» Sckevo ; .- ACKAUo
o] & At 1 ogic pume oy —ptt— STATE
roqclQ T
. e - R —p REOALo
E— > ¢ == ACKAL_
pr—f G
>

Fig. 14. Butterfly Controller Block Diagram

44 SPARING SWITCHES

As shown in the system block diagram of Figure 11, the DISP demonstration
hardware includes sparing switches and a timing and fault manager with sparing switch
interface. These resources are used (1) to attain a modest level of fault tolerance
through the on-line substitution of a spare nodal processor when any one processor
within a pool of five fails, and (2) to provide a means for issuing synchronizing trig- .
gers which will cause the four active nodal processors to begin their signal processing
activities in unison.

Figure 15 shows the 2:1 multiplexer and 1:2 demultiplexer sparing switch
arrangement, wherein any one faulty nodal processor may be excluded in accordance
with the connection rules of Table 5. Implicit in Table S is the notion of more than
one nodal processor being reassigned when a faulty processor is disconnected. This
means that every processor must, for the one-spare case, have a "back-up" processor
which contains the needed parameters, tables, etc. to operate in a reassigned role.

-24 -

Tt e e atiata i natae N SR MU S S S SN SV RN L S PAE, V-V SO I Ve U 1 U S S PR SO N

TABLE §
NODAL PROCESSOR SPARING CONVENTIONS

Data Function Sparing Trigger Sparing Spare

Input Enable Enable Output Proc’r
(D) (E) (E) (S)
0 Sparing 1 0 F P,
1 1 0 E P,
2 Switch 1 0 C P,
3 1 0 8 P,
4 Select 1 0 0 P,
. 5 Trigger 0 1 0 REQNET=1
P 6 Unused
’ R - . 7 L1}

SPANNG
SWITCH

Y
i

oo

Fig. 15. Sparing Network for the DISP Test-Bed

-25 -

45 TIMING AND FAULT MANAGER

The timing and fault manager (TFM) has two functions: (1) control of the spar-
ing switches, and (2) providing top-level synchronization for the nodal processors.
Like the nodal processors, the TFM was implemented using a VMO1A microcomputer
(Section 4.2). A simple interface was built to provide these control functions. (Figure
16). The interface is driven by one of the parallel ports of the TFM microcomputer.

As shown in Figure 16, a change in sparing switch setting begins by supplying
the correct 3-bit D word to the interface, followed by a request (REQ). For all spar-
ing codes, the enable trigger signal (E,) is zero, and no request signal (REQNET) will
enter the network. Instead, the local interface register is clocked by the TFM request
(E,=1) and the successful updating of the sparing output (S) together with the asser-
tion of the request generates an acknowledge (ACK) which is returned to the TFM.

The TFM can also issue a common trigger signal to all NPs by means of the
interface. Figure 15 shows in a general way the steering associated with data, data
handshake, and butterfly network address handshake lines. Our discussion of triggering
refers only to data handshake lines. Given that normal data requests emanating from
the active nodes and traversing the network are suppressed prior to triggering, the
TFM can inject a common request into each network channel which will be received
simultaneously at the destination ports of all active nodes. This trigger function is
independent of network configuration. Each node responds to the trigger by sending a
data acknowledge which traverses the network, notifying the nodal source ports (via
an "unsolicited acknowledge'") that a trigger has been confirmed. The primary trigger
acknowledge path, however, includes the four-input AND gate of Figure 15 where the
coincidence of data acknowledges supplies the manager processor with a trigger
acknowledge. The TFM interface is able to distinguish between data acknowledge sig-
nals arising from normal, distributed transfers across the butterfly network and data
acknowledge signals in response to TFM triggers.

When the interface is used for triggering purposes, enabling levels E, and E, are
complemented such that the interface register and comparator are inoperative, the
TFM request causes REQNET to traverse the network, and the collective acknowl-
edge ACKNET is received as a trigger acknowledge by the TFM. If the TFM inter-
face is left in trigger mode while subsequent nodal processor parallel data transfers
proceed, the resultant ACKNET signals can be monitored by the manager processor
and serve as an indicator of epoch completion. However, the TFM need not know the
details of network addressing or signal processing occurring within the nodes.

- 26 -

[N ML S Suhbiara Shas ol T —— R e e i M e e g S MR M L P B IR e e b S e A S S e B "“TT"—]

g
—

'

-
.
PPy

,
[S — s aos

N Sy T'Y':I':(“"‘-—L‘——"‘:ﬂ"_-':—\'ﬁv.‘—:!l.ﬁ‘ R Vo —

:
- REQNET

REQ 13
comp .
E, $ ACK -}
ACKNET "]
Fig. 16. TFM Control Interface

46 MULTI-PROCESSOR FFT (MPFFT)
4.6.1 Introduction

The initial goal of the DISP test-bed was to demonstrate the distributed compu-
tation of a one-dimensional FFT algorithm. This goal was motivated by the impor-
tance of FFT computations in projected applications of the DISP. Also, the distrib—
uted calculation of FFTs is an excellent way to exercise the various features of the
DISP, i.e, calculations using the MC68000 microprocessor, use of interrupt capabilities
and 1/0 ports, and inter~processor data transfers through the butterfly network. For
simplicity, the initial MPFFT effort was limited to one—dimensional data sets. +

. .
RN

In developing an MPFFT algorithm, our goal was to minimize the software
development required. Thus, an algorithm was desired which is closely related to con-
ventional single—processor FFT algorithms for which computer programs exist. A reg-
ular structure for data transfers was also desirable because this simplifies the portions
of the program which control data flow through the butterfly network.

PR

W e T
PPy

The MPFFT algorithm described in the followine sections is a straightforward
extension of a single-processor FFT (SPFFT) algorithm and thus meets all of these

-
o

IS t SR

goals. Only minor coding modifications to a SPFFT program were needed to develop
a subroutine which can be used to compute FFT’s in either a single—processor or mul-
-27- .
3

PAICEFAIPL R B At i L et Arene RSl e Sl G S S A ‘ T TN T TR TR RS VT TN L e, e g
”) R 2. A . ot . - . N . LN

ti-processor mode. In addition, the data transfers have a regular structure which can
be easily implemented in the program.

4.6.2 Partitioning the FFT Algorithm

There are many single-processor FFT algorithms which could be the basis for a
MPFFT algorithm. To achieve a working algorithm in a reasonable time, some arbi-
trary restrictions were made. Specifically, it was decided to use a radix-2, in—place,
decimation-in—-time (DIT) algorithm with input data in bit-reversed order. Another
motivation for this decision was provided by the existence of a working FFT program
coded in MC68000 assembly language. Both the number of input data points and the
number of processors were assumed to be integer powers of 2. A flowgraph for this
algorithm applied to a 8-point data set was shown in Figure 6

A partitioned version of the algorithm for a 16-point FFT is shown in Figure
17. To aid in understanding the algorithm, the data points at each stage of the FFT
calculation are labeled with the memory locations they would occupy in a single—pro-
cessor version of the FFT. The exponents shown on Figure 17 are (hose which are
generated by the SPFFT algorithm. For example, at the conclusion of the third but-
terfly stage in processor P,, the data stored in locations 1 and 3 are

xO(1) = x,O(1) +W, 2 x,&(3) = x®Y(9)
x,O(3) = x,(1) - W, 2 x,0(3) = x®(13)

where the superscript gives the value of the stage variable, L, the subscript denotes the
processor number and the argument specifies the memory locations. The variables
x(9) and x(13) are the data values which would be found in a single—processor
implementation in memory locations 9 and 13 at the completion of the third butterfly
stage.

The first effect of partitioning we observe from Figure 17 is that there are two
types of butterflies. The butterfly stages that are accomplished prior to any data trans—
fers are called the internal butterflies. Those which are carried out after data transfers
are called external butterflies. For a single-processor FFT of an N-point data set,
log,N stages of butterflics are required. If the N data points are partitioned equally
among P processors, each processor will have N/P points and the internal butterflies
will consist of log,(N/P) stages. Thus, the partitioned algorithm has log,(N/P) inter-
nal butterfly stages and log,(P) external butterfly stages.

Each external butterfly stage requires one block data transfer, so there are also
log,P transfers. The pattern of these block data transfers is very regular. In particular,
eacit transfer between two processors consists of an exchange of the lower half of the
data in one processor with the upper half of the data in the other (see also Figure 7).
To determine the destination processor in a transfer we use the cube, functions defined
by Siegel, et al [17). The P processors are labeled P, P, .., P, . If we express
each address as a binary number the bit pattern is

b, ... b, b,

-~ 28 -

- & - .

TRANSFER, TRANSFER,
2 =L CUBE, L=3 CUBE, L=4

0 o >0< 0 O —— » |0 0 O] —— |0 o 0

1 1 ' 1 1 1 1 1

Po — r ——t — — E—

2 2 2 4 4 8 8
>< 4 00 — 01 2 00 — 10 1

3 3 Y 3 r\/ 5 5 \ 9 9

. o 4 o 4 /\ 2 2 _L |,)
>< ° 01 - 00 4 2

1 5 5 3 3 3 3

P’ fr— 4 L'—' = r—- —

2 6 >< 6 6 L1} PAY (T4 10

3 7 0 ‘N7 ===+ 78\ |7 v 1l 73\ |

N
o

K X

12 12
13

10 12
13

P
©0 Q0
S |
I |
i(b []
PR
lw)
| 3
| |
Y
[$,]
<
@ ,Z,'luvh

13

4
w
-
-

"

’-'-‘. 0 12 12 10 10 \ 6
: 1-10

13 ! 1 1"

14 14

15 15

1 13

6
7
—
14

5

14 |14
15

<
I

!

'.
f
23
Il:
| i
v o

X X

16

SINGLE-PROCESSOR MEMORY LOCATIONS l'—PSEUDO-NOF!MAL-ORDERED

: OUTPUT DATA
DISTRIBUTED-PROCESSOR MEMORY LOCATIONS

Fig. 17. Partitioned FFT Algorithm

where 2J = P (notice the assumption that the number of processors is an integer power
of 2). The cube, function of this bit pattern is

b b ;. by, bb ... by
that is, the ith bit is complemented. For example, if P=4, as in Figure 17, and we con-

sider processor P, whose address is 00, the cube, function is 01 and the cube, func-
tion is 10. The destination processors in the first transfer are determined by use of the

-29 -

L . e) e e S e
PP ISR T Y > bV S [T AO SAS- S Sl W AT YOI SalY S GG G L) At e i PR e

""‘5'~'.js‘.‘!l"-'>‘-‘ MIOSIRA A P AR R s A e

!
¥

Bl FOR

Aol i o

3 -XY AMININN

St

3

W x4 RO

S

7 . R

Sl

’
55y

O 4 U

v

v

CRY)

R SOOI 38

L TR 4

.

bedingh it AsA

A

BN | GRS o

. .o P
l!“‘-...

")

Ty T veY
s 4 ieelHe

L)y, LA ARt O s ™
L K i
et [4,“,_".'._',."‘ V.,

L B B B
LT

v e ——_— 9 p—— T T P

cube, functions, those in second transfer by the cube,, and so forth. Thus, in the first
transfer P, transfers to P, and P, to P, Also, P, transfcrs to P, and P, to P,. In
general, the destinations in the ith transfer, i=1, 2 .log,P, are dctermmed by the
cube_,, functions.

It remains to specify whether a processor transfers the upper or lower half of its
data.} This is accomplished by designating each processor as an "upper-half' or "low-
er-half' processor at each transfer stage. To determine in which half a processor
belongs at the ith transfer stage, i=1,2,...,log,P, we mspect the (l—l)st bit of the pro-
cessor’s binary address. If this bit is zero, tfxe processor is an "upper-half' processor.
It transfers the upper half of its data in the data exchange at this stage. A processor
whose (i-1)st bit is 1, transfers the lower half of its data at the ith stage. For example,
in the four—processor configuration of Figure 17 at the first transfer stage (i=1), the
least significant bits of processors P, and P, are zero, hence these are upper-half pro-
cessors; P, and P, are lower-half processors at this stage. At the second transfer stage
(i=2), the b bit of the processor’s binary address is inspected. The result is that P,
and P, are upper-—half processors while P, and P, belong to the lower half.

As shown in Appendix A, the partitioning illustrated in Figure 17 has the very
desirable property of leading to a simple algorithm. The algorithm requires that the
input data be arranged in bit-reversed order prior to partitioning among the proces—
sors. Unfortunately, the output data is not in partitioned normal order, contrary to
what occurs for a single-processor algorithm. The distributed processor algorithm
produces the data in what we refer to as "pseudo-normal’ order.

It should be pointed out that the transfers discussed here and illustrated for the
four-processor, 16-point example of Figure 17 are not unique. Other patterns of trans—
fers were investigated, but had the disadvantage of structures for which the general
pattern could not be easily discerned and described analytically. Thus, these were dis—
carded in favor of the regularly structured block transfers illustrated by Figure 17.

4.6.3 Determination of Butterfly Spacings and Computation of Weighting
Factors

We are now ready to consider the spacing of points which are combined in the
butterfly operations and the formulas which are necessary to compute the weighting
factors. Our approach will be to show how the spacings and butterfly weights for a
single-processor implementation can be modified to generate an MPFFT algorithm.

The spacing of points required in the FFT version used in the test-bed is par-
ticularly simple. For a single-processor algorithm as illustrated in Figure 6, the first
butterfly stage requires data in adjacent memory locations. The second stage requires
data in memory locations separated by two units; the third stage requires points sepa-
rated by four units, and so forth. In general, at the Lth stage, the single—processor
algorithm requires points separated by 2! memory locations. The MPFFT algor-
ithm proceeds in the same way (see Figure 17) until the point where data transfers
must be made in order to continue the butterfly computations. Notice that beyond this
point, the butterfly spacings are the same in each processor. If the transfer strategy

3 Upper and lower refer to addresses in local memory, not to the relative positions in
Figure 17.

-30 -

A T e e A A e R B Bon Rim e P S B B B M e B B B e B e A mt _ afm ' a® " ' e ot atoae o L e oL

e —dl

im_om.m.a a-

Bl o8l

B e s A s San es e A e e M ol e e deae - a0 T T

described previously is used, the post—transfer butterflies in each processor require
points separated in memory by 2(*-) units, where L*=log,(N/P). That is, the sepa-
ration of data points required in all of the external butterfly stages is the same as for
the last internal butterfly stage.

Next, let us consider the generation of the appropriate weighting factors. We will
use

Wy R(n) = ¢ RN @-1)

to represent at a given stage the weighting factor needed in the nth butterfly. The but-
terflies in each processor are indexed starting with n=0 for the uppermost butterfly,
n=1 for the next butterfly, and so on. The subscript N corresponds to the total num-
ber of points. The general expression for these weighting factors is

W R@) = Wk (n) 4-2)

In Appendix A, the expressions for the exponent R=R +ks are derived.

464 The MPFFT Algorithm

The flowchart of the radix-2, in-place, decimation~in—-time SPFFT algorithm is
shown in Figure 18. This flowchart is identical to that of a conventional, single—pro—
cessor FFT algorithm except for the addition of the upper-right-hand computation
loop and the two new input variables, J and Q. The extra computation loop is
invoked for external butterfly stages. It generates R, the initial value of the coeffi-
cient exponent, using the equations derived in Appenéix A. The parameter J indicates
whether internal (J=0) or external (J>0) butterflies are to be computed. When J>0, it is
interpreted as the external stage number, and is related to the stage number, L, by L=J
+ log(N/P). Finally, Q is the logical processor sddress. Most of the computation is
performed in the box labeled "Calculate One-Stage of FFT"', which is identical to the
corresponding portion of the SPFFT algorithm.

The MPFFT subroutine was coded in about 250 lines of MC68000 assembly
language, of which 200 were taken from an existing SPFFT routine. The subroutine
was extensively tested using the MC68000 simulator on the AMDAHL 470 computer.
Simulation results using the MPFFT algorithm in a single-processor mode were com-
pared with test results obtained using an APL subroutine on the AMDAHL 470. The
results agreed to within the precision of the two machines. The SPFFT simulation
results were then compared with MPFFT simulations. These two sets of results were
identical for all of the test problems. Approximately a dozen test cases were run with
a variety of numbers of points, different numbers of processors and different input data
characteristics. After successful completion of these tests, the MPFFT subroutine was
incorporated in the demonstration package and again *ested successfully against the
simulation results.

-31-

| § SURTUNRISTN

,, B T i e e
D . P -'n:uﬂl Rl

.'-""H - "_ " "'v X "|

N T o N T T T R T T T >, v

ENTER MPFFT

NJ.Q

EXTERNAL
NO (BUTTERFLIES
INTERNAL
Yes (BUTI’ERFLIES R = MQ mod 2
i o 141

R =0 2

L=1 L = log, (M)

ot —
CALCULATE

ONE-STAGE OF FFT
(R =R, +ks)

L=L+1

YES

NO

Fig. 18. Multi-Processor FFT Flowchart

- 32 -

| LERCRINISHISI | SN

5

D ' e a Y et e .. o BN
a . ta L NS WY Y Ul S R O AP UL PN L) T W WY ot S ORI I S S W G G WU I

Yy r‘v’v'rrr.i...-, I A

AR AR AL
o e co f f
P AR bt N

2

VS A P PRSP W YR SR SO WA SV, P AL NP S S S) PSR L S

- T Y S Y Y W R T T T e T N T Y T S T W W T o e —w Tw D w s v v

The sequence of calls to subroutine MPFFT is shown in Figure 19. Notice that
the subroutine TRANSFER is called to accomplish the necessary data exchanges
among processors. The first call to MPFFT simply computes a conventional single-
processor FFT with M=N/P points and J=0. An additional call to MPFFT is needed
for each external butterfly stage, using the weights derived in Appendix A.

i

CALL MPFFT (N,0,Q) } CALCULATE log (N/P) STAGES OF

INTERNAL BUTTERFLIES

CALL TRANSFER (K, Q)

1

CALL MPFFT (N K, Q)

CALCULATE log P STAGES
T OF EXTERNAL BUTTERFLIES
K=K+ 1
K < log, P? Yes
-
NO

Fig. 19. Calling Sequence for Multi-processor FFT

4.6.5 Summary

The goals established for the MPFFT algorithm were satisfied. The SPFFT was
readily modified to provide an MPFFT routine which can be used in either a single or
multiple-processor mode. When used with a distributed system of processors, all pro-
cessors execute the same program. Individual differences are accounted for through
subroutine input parameters. We also observe that both internal (pre-transfer) and
external (post-transfer) butterfly stages are computed by the same program. The
log,N/P internal butterfly stages are computed by setting the flag/index J equal to
zero before calling the MPFFT algorithm. Each external butterfly stage requires a
separate call to the MPFFT subroutine with J= 1, 2, ..., log,P.

- 33 -

= 4.__‘_.‘_1.__._‘_,->‘._:.~-;-.,-~ aa - a

PELTLE i

y
i
:J

i
f
!
-

ARSI

5""u'-""'

T
.
1

T MR e e e e N e T

4.7 MANAGER AND NODAU PROCESSOR SOFTWARE
4.7.1 Introduction

This section provides a top-level description of the software written for the tim-—
ing and fault manager (TFM) and each of the nodal processors (NP) to carry—out the
distributed calculation of a 1-D FFT on a four-node system. The description is given
in terms of events appearing to an observer running the demonstration package. More
detailed descriptions of the multi-processor time-line, the data transfer tables, the
mailboxes, and the reconfiguration software are deferred to the Appendices.

Before leaving this introduction, it should be emphasized that very few changes
would be needed to extend the applicability of the current software to an arbitrary
number of nodes.* Furthermore, a very large part of this software could be reused
directly to carry out other distributed calculations.

4.7.2 Operation of the Demonstration Package

A flowchart of the demonstration software package in shown in Figure 20. It
shows the successive operations carried out cooperatively by the TFM, the five NPs
(including one spare), and the Amdahl 470. Each box corresponds to a specific task
in the demonstration. In the lower-right corner, the name(s) of the processor(s)
mainly responsible for the task is given. The number in the lower-left corner corre-
sponds to the following subsections.

The various tasks are now examined in detail and the corresponding computer
outputs are shown in Figures 21-27. The composite outputs of Figures 21-25 have
been obtained by appending two successive frames from the display terminal. The
sequence of outputs shown in Figures 21-27 is automatically generated by the demon-
stration package, with minimum action required on the part of the user, such as typing
"U" to upload, or "CR" (carriage return) to continue.

4.7.2.1 Turn on Selected Display Features (TFM)

The operator can choose among three levels of sophistication regarding the
information displayed on the terminal. In the defauli setting, (a) messages are printed
to allow the user to monitor the tasks being initiated or completed, (b) the input data
and output results are plotted, and (c) the block diagrams illustrating the various pro-
cessor interconnections are displayed. The block diagrams, or both the block diagrams
and the plots can be omitted if desired, thereby leading to a faster and more realistic
demonstration of the distributed FFT calculation and of the reconfiguration. The fol-
lowing discussion assumes use of the default option.

4 Of course, this number must remain a power of 2.

- 34 -

o Bl oo PIT S S 3 ~ P

P

A iy n . S— v :3%

O—

©O—

SELECT DISPLAY
FEATURES

TFM

UPLOAD AND
DISPLAY INPUT

[470.7Fm]

LOAD DATA
SUBSETS

[NPs]

PARALLEL
START

TFM

-FIRST EPOCH-
INTERNAL BF

NPs

~SECOND EPOCH-
TRANSFER DATA
AND EXT BF

NPs

-THIRD EPOCH-
TRANSFER DATA
AND EXT BF

NPs

o—

©

Fig. 20. Flowchart of Demonstration Package

LU T N i WAL S S WAL, S

©
|

REORDER AND
COLLECT
RESULTS

NPs

UPLOAD AND
DISPLAY

[¢70.7FM)
I

LIMIT DISPLAY
FOR MULTIPLE
FFTs

TFM

RECONFIGURE

frrm.neg

REACTIVATE
ALL DISPLAY
FEATURES

TFM
'

sTOP

. [. .
R R U R St cl. T .
U I A S I WA W VUL WY G, YR R YR Y T IR W VT D PO Y S Y

ek, AP P W L P - P o = P P W

4.7.2.2 Upload and Display Input Data (470 and TFM)

The data to be transformed are typically generated by the TFM, but can also be
downloaded from the 470 if necessary. In ecither case, the TFM subsequently activates
an executive routine in the 470, which then invites the user to initiate the upload by
typing "U" (Figure 21). This transfers control to a TFM "upload' subroutine, which
sends the data to be displayed to the 470, where the activated routine is waiting. After
collecting the full data set, the 470 routine formats the data and generates, in "translu-
cent' mode (see Appendix G), a display of the real part of the input data (Figure 21).

\ L] T 1 | L 1) L) 1 1 T 1
1o T r
09~ -
(X o -
o7 e
w
g 08— -
3 1) o -
§ o4 —
03 -
02 -
A -
(/] -
i 1 1 l 1 i 1 1 1 L A]
[10 20 30 L] S0 []

TIME

Fig. 21. Input Data Display

4.7.2.3 Load Data Partitions (NPs)

This step consists of making availabie to each active NP (excluding the spare)
its share of the input data. With the present scheme, the bit-reversed data must be
transferred to a portion of the memory address space that is common to all proces-
sors, namely the load-and-test memory of Figure 11. After being instructed to do so,
each NP loads its portion of the data, as determined by its logical identity.’ Proper
completion of this step by all NPs causes the manager to print the message "data load-
ing completed" on the screen as shown on the first line of Figure 22.

3 Initiaily, the logical and physical identities are chosen to be identical (see Appendix
C, Phase 1).

~ 36 -

4.7.2.4 Parallel Start Nodal Processors (TFM)

This nearly-simultaneous start of the NPs is caused by the TFM, which broad-
casts a "trigger’ to all NPs (including the spare which ignores it). The message "par-
allel start issued" appears on the screen (Figure 22), indicating that the NPs have initi-
ated their distributed signal processing operations.

4.7.2.5 First Epoch (NPs)

The first epoch consists of all butterfly calculations that can be done internally
by each of the NPs (excluding the spare), i.e., without any exchange of information
between processors. Upon completion of these “internal' butterflies, the message “first
epoch completed’ is generated by the TFM (Figure 22), thereby indicating that
log,(N/P) FFT stages have been computed. The TFM then sends a command to the
470 which responds by displaying the block diagram shown in Figure 22. It shows
that the first epoch does not involve any transfer over the network, and also that the
current spare is the NP with physical identity 4, i.c., P4. In order to proceed to the
next epoch, the user only needs to type "CR", as suggested in the upper-right corner of
the diagram.

4.7.2.6 Second Epoch (NPs)

The second epoch begins with concurrent transfers of data over the properly
configured butterfly network, and is followed by internal calculations on the new
combinations of data points available in each of the NPs. These butterfly calculations
are called "external' to emphasize that, prior to the transfer, the corresponding FFT
stage involves data present in two separate processors. The stage just computed is the
(1og(N/P)+1)th one, but is often referred to as the first stage of "external’ butterflies.
Once this task has been completed by all NPs, the message "second epoch completed”
appears on the screen (Figure 23), and is quickly followed by a block diagram show-
ing the related processors’ interconnections (Figure 23). A "CR" is all one needs to
proceed to the next epoch.

4.7.2.7 Third Epoch (NPs)

This epoch, which is also the last one for a 4-node system, has the same struc-
ture as the previous one: it differs from it by the network configuration and the coef-
ficients involved in the corresponding "external' butterflies. Figure 24 indicates the
nature of the message and block diagram appearing on the screen upon completion of
this task.

4.7.2.8 Reorder and Collect Results (NPs)

At this point, the results are available in "pseudo—normal" order in the proces-
sors P, P, P,, and P, taken in that order . Because it is impossible to get direct

-37-

LT Wl ST S

L.

lase’aT e 0l

;\..:J

k:
A
A
"
&

125288-N

SPARING SWITCHES

SP, BUTTERFLY SWITCH P,
z S NETWORK AR

Fig. 22. First Epoch (Pre-transfer) Network Configuration

access to the full set of results from any single processor, the results are regrouped in
the load-and-test memory, where they are available to all processors, in particular to
the TFM and the 470. One could then have the TFM reorder the results if desired.
However, it has been found that the transition from "pseudo-normal" to normal order
could be achieved through two (log(P) in general) transfers through the network,
namely, by successively using the third and second epoch network configurations, and
doing the related transfers in opposite directions. While this technique would not be
chosen for an operational system, it has been adopted in the experimental test-bed as ;
a means of further exercising the network. The reordering by the NPs requires two L
successive configurations of the network, but the corresponding block diagrams are not

shown. The whole reordering-and-transfer operation is completed when the message .
“result transfer completed" appears on the screen (Figure 25). g

-~ 38 -

N e ARSI TR PR R S e N
At et STy D DT A T DRI TR - . e oo
- VRN W 1. R S T S W Tl S S A S 2% a . e Tat o g e s e g e et

NP SCAONISIILINNY : O T

B

SPARING SWITCHES

s _(N

/
j

P, > P,)
N — eed
L BUTTERFLY SWITCH e
N NETWORK b
Fig. 23. Second Epoch (First Transfer) Network Configuration
ik
SPARING SWITCHES
Py P,
1
'l P‘
-
P, P,
P, L
s BUTTERFLY SWITCH P
NETWORK
£
Fig. 24. Third Epoch (Second Transfer) Network Configuration -
N
]
-39-]
e PR R PP S P P S - R S I AR P ot S S S N PO S -'J

o e DAan N T r——r——y— PRd RO e ey e L g Y dE o g o w—

4.7.29 Upload and Display Results (470 and TFM)

. s v e e
| A
: - ala . N

The sequence of operations which leads from the array of results in load-and-
test memory to the magnitude plot shown on the display (Figure 25) is identical to
that involved in uploading the input data (Figure 21).

VAN

- PR e s

R 4

l._. R

'
et

. ~
Vo o,
Lasalalem)

FFT MAGNITUDE

|] | | 1 1 | i 1 1 A 1 L
0 10 20 30 40 50 60

FREQUENCY SAMPLE NUMBER

I.:’ .

B LI

Fig. 25. Result of Distributed 1-D FFT

4.7.2.10 Select Display Features (TFM)

From this point on, new FFTs are repeatedl. computed, and the output plots
will be the only items displayed. This endless loop will be broken if faults are injected
in one or more NPs via their individual fault-injection thumbwheels. This provides
an artificial way of simulating true internal faults in the NPs and forcing the system to
reconfigure. The thumbwheels are examined many times per FFT, as illustrated in
Figure 20, to determine if a fault has been injected.

.
-
,
IR T RUPAINIALY rUNUNANEIRAEALY by

4
!
)
:
]
}
]
3
d
}
d
.
4
s
E
&
!
’:

4.7.2.11 Reconfigure System (TFM and NPs)

If a single processor is found faulty, the system is automatically reconfigured.
Although faults in up to 4 NPs could easily be handled by graceful degradation,
whereby the number of active processors would be reduced to 2 or 1 as needed, this
feature has not been implemented. The demonstration package simply stops upon
detection of multiple faults.$

4.7.2.12 Reactivate Display Features (TFM)

Before resuming calculation of FFTs, the display features which were turned off
carlier are reactivated, except for the input data plot. For example, if P, was desig-
nated as faulty, then Figure 23 would be modified as shown in Figure 26.

SPARING SWITCHES

’
-~
P’
PR

AP APAT

BUTTERFLY SWITCH .
NETWORK

Fig. 26. Second Epoch (First Transfer) with P, "Faulty"

The newly declared—faulty processor becomes the new spare in the reconfigura— ;
tion process and will remain so in all new calculations. If the thumbwheel of the
faulty processor is brought back to its original position, the current spare is again
ready to be called upon by the TFM upon injection of a new fault. Otherwise, if two
thumbwheels are 'simultaneously" found in their fault-injection positions, the system
will not reconfigure. Figure 27 illustrates the reconfiguration mechanism through the

¢ Single fault refers to one or more faults in a single NP, while multiple faults refers
to one or more faults in more than one NP.

- 41 -

W J-e s ¥°8
d. .- .
S e e e

. [s e ¢ T T > =% ¥ ¥ 174
a ‘.'.'.'.'.‘?','f el

e A o b e e e e amse Sen S St 2t dhde Tt S ARl T dr i A S et A i B I r——— T T T Y

WHAT
UERSABUG 1.8) GO 4808 -
PHYSICAL ADDRESS=000084000

WELCONE TO DEMO

DATA LOADING COMPLETED
PARALLEL START ISSUED
FIRST EPOCH COMPLETED
SECOND EPOCH COMPLETED
THIRD EPOCH COMPLETED
RESULT TRANSFER COMPLETED

SINGLE FAWT DETECTED
RECONF IGURATION COMPLETED

DATA LOADING COMPLETED
PARALLEL START ISSUED
FIRST EPOCH COMPLETED

console messages, i.e., with all plots and block diagrams suppressed. This corresponds
to the case of two successive single—fault reconfigurations followed by a double-fault,
which results in the termination of the demonstration package.

SECOND EPOCH COMPLETED.
THIRD EPOCH CONPLETED
RESULT TRANSFER COMPLETED

-81 ! SINGLE FAWT DETECTED
RECONF IGURATION COMPLETED

DATA LOADING COMPLETED
PARALLEL START ISSUED
FIRST EPOCH COMPLETED
SECOND EPOCH COMPLETED
THIRD EPOCH COMPLETED
RESULT TRANSFER COMPLETED

MULTIPLE FAULTS DETECTED
END OF DEMO-81

VERSABUG 1.0 >

Fig. 27. Reconfiguration Messages

] .. '-,"L'-_,l,-‘l; A 2. P . 2. .. A 2

- 42 -

e Rt fo B an e san m aemoaamiial & e Al Al el el e - o

il TR

) SO

» -
A

IS ol ST I

Kl{- :“._: ‘.-‘_-_- ° 'I',i (T .‘, .,

D,

[y

L _L: el

55 SO
PRSP [

|

v L e e v T e N Y T T T . - it G T, e Te e e T T TR T T L I R e e e T e T e

A SN
Pund) RGO

48 SOFTWARE DEVELOPMENT TOOLS

ety g
I PSP

!
‘ 4.8.1 Introduction
1

)

. This section describes the software tools that were used to support software ;_':
: development for the DISP test-bed. The tools are: (1) Versabug, a firmware-resident -]
monitor/debugger; (2) an absolute cross assembler resident on the Amdahl 470; and g

' (3) a simulator for the MC68000, also resident on the 470. All three programs were B
supplied by Motorola. E—

.1

In addition to these major tools, a number of utility routines were written to : R

support and enhance the distributed FFT demonstration program. These routines are E

described in Appendix G.

. wd

R P
P

4.8.2 Versabug (M68KVBUG(D1))

Versabug is a minimum function firmware-resident debugging package for the
Versamodule Monoboard Micromputer. It is a limited capability monitor system
stored in eight 2K x 8 EPROMs which physically reside on each Versamodule
(VMO1A) Versabug recognizes over three dozen commands, but in practice, only
about half are used. Versabug was slightly modified to support the needs of the test—
bed. These modifications are described in Appendix G.

When the VMOIA is attached to a terminal, Versabug carries out a limited
interactive dialogue with the user. When the same VMOIA is also connected to the
host 470 computer, Versabug can pass information between the user and host in
"transparent mode".

A typical user-Versabug scenario starts with the user connecting to the host via
the "TM" (transparent mode) command, downloading a previously assembled program
from the host using the "LO" (load) command into the 32Kbyte on-board private
RAM and then executing the program just loaded with the "GO" command.

With the program loaded, the user can interact with Versabug to set/remove
breakpoints; display/modify memory; display/modify processor registers; initialize/test
blocks of memory; trace through the program under test and finally upload blocks of
memory to the host computer.

4.8.3 MC68000 Cross Macro Assembler (M68KXASM(D3))

The application programs for the DISP test-bed were all coded in assembly
language using the cross assembler installed on the 470 computer. The procedure was .
to use the host editor to create or modify an assembly language source program file »
and finally to invoke the cross assembler. .

The cross assembler is a standard two pass type, containing many useful assem- (L
bler directives and featuring a macro facility with nesting up to three levels. It pro- .’,

- 43 - ‘
]
3

P IR St P WL Sy il ool livsrmresBreirenBosibontincth S e B 3 i 20 slhtonsed -t o AL o - & m . fa . _———— e e

Dy T
. . ARt
-, ot

Tttt T

Ty
r 4

PR
2

x>
17y

e L

TS ———————

vides a printed listing containing the source language input, assembler object code, and
error codes. It also generates an object code file in a format acceptable to the Versa-
bug loader to permit downloading of the program from the host to the VMOl A.

The principal shortcoming of the assembler is that it produces absolute object
code. (Motorola now sells a relocatable cross—assembler plus linking loader which has
been purchased and installed on the 470.) The absence of relocatable code and
accompanying linkage editor forced the writing of long main programs rather than
several small relocatable, linkable modules. Further, the origins of the principal mod-
ules had to be assigned absolute values known to the programs in absolute terms. This
amounts to manual linking of the main modules.

4.8.4 MC68000 Simulator (M68KOSIM(D2))

A second non-resident programming tool that proved very valuable in debugging
portions of the application software is the MC68000 simulator. It simulates the execu-
tion of an object program generated from a source program which had been assembled
by the cross assembler. Since the simulator operates on the host machine in the time
sharing mode, simultaneous multi-user operation of the simulator is possible.

The simulator is very effective in debugging computation-intensive code, but is
of little help with input—output problems. The value of the simulator is that a user
could debug all or parts of his program without using the Versamodule hardware.

The simulator command set is a8 subset of the Versabug command set. Included
are load program under test, set/clear/display breakpoints, set and display memory/
registers, run program and trace program.

49 EXAMPLES AND PERFORMANCE
49.1 Examples

Figures 28 and 29 illustrate the several stages in the calculation of the distrib—
uted FFT of a rectangular pulse and linear~-FM chirp. Both examples contain 64
data points. In both cases, the first graph presents the input data set in normal order.
Prior to distribution to the NPs, the entire array of data must be bit-reversed, and this
is accomplished by the TFM. The bit-reversed array is shown in the second graph
which clearly indicates that the first sixteen points in that array must be loaded into
P,, the next sixteen into P,, and so on. The third graph shows the results in pseudo-
normal order after computing all internal and external butterflies in parallel in each
node. This unfamiliar ordering can be unravelled by the NPs through two additional
transfers over the network. The result of this reordering is presented in the fourth

graph.

- 44 -

e % A& m A m e -t s oea

DA i I I E A S i e -0 o i aaee b i e e

o NI

RE . § Sovre

[N
Al)

. L
PR Y T A

'E.’J;l'l‘-

RN PRI A RIER i A 2 P e B e M A MBI s ittt
;_"_.’ ’ \
v
- 1
P -, q
o . _i
I.'»’- -
s v T T T T T T & | K
" 1 :
-l
S 0.75Q- r
z 1
3 osof T (a .
q 4
< il ‘ :
0.28
g -
: Y . T T 4
o 8 16 -24 32) [56 d
TIME SAMPLE NUMBER
10 T T ——m— T ? Y T Y r
uQJ 0.7 - N
2 T
S Po Py Py Py
s 0.50 4~ b (b)
<
< .
< 025 -
o
° —
0 8 16 24 32 40 48 56

BIT REVERSED TIME SAMPLE NUMBER

w"h T Tt T T — 1 oq_

8 o A °

g A p Py P2 Py ° :
z | A ° |7 :
< 050 A ° (c) -
o i :
E o2 A Ny a
WAL TN —:

0 1 1 1 (1 L 1 .

0) 16 24 32 40 a8 56 ¥

PSEUDO NORMAL FREQUENCY SAMPLE NUMBER .

10 r—ﬁ T T T T T T LB)
w A o J
?g- 0.75 - A ° k
= A 0o - 3
& osof ° (d) A
2 a 5
T oz} A B '
& SN, g
g oo" V t}f 3

ol

1
" |

[} 8
FREQUENCY SAMPLE NUMBER

Fig. 28. Multi-Process: r FFT of Rectangular Pulse

K .

- 45 —

s i PR IPUC Y THPEP© 3 W W W U U R . Qo PO PN YOG ey ey Y 2 e g S, o Lo by - MY SR S VNP W O * R . o L) 5 e

P |

LN

.

]

P,
Sd
-
i
10 Y Y - .;
)
w] o
S o - —-J‘
2 »
= 4
g 0.50 .l {a)
< ' .4
<
- _
< oz ﬁ
0 1 1 1 1l » e -
o 8 16 24 32 0 a8 56
& TIME SAMPLE NUMBER
g '0 : o
1 I R T A
z A ale o °
z omf A . _
w T o
a & ‘ o °
2 oo P fa P B R P; 9 (b)
o a ° °
o A a [J [
= o e -
S o0s|- * .
< A Fa o °O
g 0 _J a Y AAl A. L ® . ° |
o 0 8 16 24 32 40 a8 56
o BIT REVERSED TIME SAMPLE NUMBER
w 1o T T E— T =
e | .
z O™ |
8 p 1@
0.50 |-} P P ¢
g 0 p1 2 3
z -
0.26 |-
g 4
N Y |
0 8 18 24 32 40 a8 66
PSEUDO NORMAL FREQUENCY SAMPLE NUMBER
1 I T | LN
w
S
=
z
g (d)
=
I
w
A

[} 8 18 24 32 40 48 58
FREQUENCY SAMPLE NUMBER

Fig. 29. Multi-Processor FFT of Linear FM Pulse

T R ENY R I
e PPN S WO

! s
PP I Y

— 46 -

S e tmd R P I T A N S R P

4.9.2 Execution Time

"d The critical sections of the distributed FFT are the butterfly (BFY) calcula-
. tions, the FFT transfers, and the reordering transfers (optional). The rest can be

‘ regarded as overhead such as loading of data and precomputed results, and checking
and transfer of final results. The execution times of the critical sections and of the
overhead will be denoted by T(BFY), T(XFR), T(ORD), and T(OVH), respectively.
These parameters can be determined indirectly by measuring the execution time of a
number of distributed FFTs in four different situations, namely’

L 2 200 v ael

A P

A
Lat et

compute BFYs, do FFT transfers, do not reorder results
skip BFYs, do FFT transfers, do not reorder results
compute BFYs, do FFT transfers, reorder results

skip BFYs, do FFT transfers, reorder results

Towp

Denoting their respective execution times by T(A), T(B), T(C), and T(D), it is
clear that

T(A) = T(BFY) + T(XFR) + 0 + T(OVH) :
TB)= 0 + T(XXFR)+ 0 + T(OVH)
T(C) = T(BFY) + T(XFR) + T(ORD) + T(OVH)
TD)= 0 + T(XFR)+ T(ORD) + T(OVH).

& These equations are approximate since, for example, it is not true that the overhead is

absolutely identical in all cases. However, the differences are certainly very small.
Because T(BFY) and T(ORD) can both be obtained from two different measurements,
averages will be taken. Furthermore, with excellent approximation, T(XFR) is equal
to T(ORD) since both involve the same types and numbers of transfers. Thus, in
summary,

T(TOT) = T(C) |

T(BFY) = 0.5[T(A) - T(B) + T(C) - T(D)]

T(XFR) = T(ORD) = 0.5{T(C) - T(A) + T(D) - T(B)]
T(OVH) = T(C) - [T(BFY) + 2 T(XFR)]

To determine the numbers T(A), ..., T(D) with a stop watch, the following pro—
cedure was used to eliminate any bias. In general T(X) was taken as

T(X) = T(X,2000)-T(X,1000) (result in msec)

where T(X,J) represents the total measurement (in sec) corresponding to J FFTs.
- Table 6 shows the measurements obtained for a 64—point transform as well as the exe-
e cution times derived from the above formulas.

For reference, the execution time of all butterfly calculations on a single proces—
sor is 39.65 msec. Note that it is tempting to compare T(BFY)=13.75 msec with 39.64
msec/4=9.91 msec. This comparison should, however, be done carefully because
T(BFY) includes operations other than strict butterfly calculations, which cannot be

NN & SUMILN

’
S

7 These four cases can easily be generated by just changing the values of two parame-
ters in the demonstration package.

- 47 -

e I At A St S St ST Rt AL Arae S e Zhas Jote e ben atAn S Sien A At ame dnd At endiadt Jud Jasioens - o de-

TABLE 6
MEASURED EXECUTION TIMES

X T(X,2000) T(X,1000) T(X)
A 98.6 sec 50.0 sec 48.6 msec
B 71.1 sec 36.1 sec 35.0 msec
C 165.5 sec 83.4 sec 82.1 msec
D 137.7 sec 69.5 sec 68.2 msec
T(BFY) = 13.75 msec
T(XFR) = 33.35 msec

T(ORD) = 33.35 msec
T(OVH) = 1.65 msec
T(TOT) = 82.10 msec

separated out with this simple method, because of the structure of the programs. The
parameter T(BFY) actually involves: (1) true butterfly calculations, including the
increase in complexity of the multiprocessor FFT program, (2) sending a message to
the TFM, (3) looking once at a fault-injection thumbwheel. One should also point
out that none of the above cases includes the "bit-reversing' operation, which is
assumed to be carried out separately. Bit-reversal takes about 1.20 msec for 64 points
on a single processor.

The timing figures given above clearly indicate that the network transfers are
primarily responsible for the relatively poor performance of the distributed system.
This limitation was recognized at the outset as the cost of building the test-bed with
standard, single-board computers. An upgrade to the test-bed is planned which will
include a DMA-driven, multi-ported memory to eliminate the data transfer overhead
time. Software modifications which will overlap the transfers and calculations are also
planned.

4.9.3 Lines of Code

One simple measure of the software effort is the number of assembly langaage
instructions® used in the demonstration package. Table 7 summarizes these numbers
for the Versabug modifications, the TFM program, the NP programs, and the multi-
processor FFT.

Note that a large fraction of TFM instructions (307) are used to provide the display
features such as messages, plots, and block diagrams.

8 Comments are excluded.

-~ 48 -

PP YT NP W T WL P P G DU VT SN, P W A S W A o I P D .';-A-.-M‘;;L‘_“‘;"i

F—f.V.-. FIRgh Rl Bag Madh St s e eSS ECIMC IS Jaas S M\ RNCReE CARac Rl Jpe g - Ll S e . E ERCEACIDCEPE e e AT e et B it e o

E. : y
4 X
y]

]
LA

5 TABLE 7
LINES OF ASSEMBLY LANGUAGE CODE

ot VTR

IN DISP DEMONSTRATION PACKAGE

PR

Program Number of Instructions

2 MOD to VBUG 128
- TFM PGM 835
2 NP PGM 993
MPFFT 246

- rh‘h}'"‘ B

. Total 2202

o Lo e

*
YT . § SEOBIERTE

-y

-
Tl gt Teet
PARVEVEIRD 3 o G

L

B .
. -
s

.,

"o
»

2 ~

- 49 -

E M Rt B S A e S

E-:r‘f".'"-‘_‘u G a il Arelt et i S SC AR s i v i DR st Regs AL N st Meiil evh Jed vuin s Sede Mien A part Sre 2o T

:

Chapter 5

SUMMARY ‘

:

An architecture for performing distributed signal processing has been described. The .

- emphasis on real-time signal processing simplifies the design because of the highly

Eﬁ»j: structured time-line and algorithms associated with such problems. It also permits the "

i use of a simple, easily controlled butterfly network and results in managable, modular J
software. -

The butterfly network provides simultaneous, conflict-free data transfers for
multi-dimensional convolution (correlation) algorithms, and for a number of different
multi-dimensional FFT algorithms.

A distributed signal processing test-bed has been constructed containing four
active nodal processors, one spare, and the timing and fault manager. It has demon-
strated and verified the concepts of (1) shared algorithm execution, (2) conflict-free
data transfer, (3) distributed network control, (4) dynamic fault reconfiguration, and
(5) identical software in all nodal processors.

- - 50 -

. . - S e o N .
e e e . N x § ‘a . ST S el e s - N - LR . PN v .
= = - S— e 2 — AeaJd F 9 e o VUGS . L, S . UL WOl WHRY Wl N AP “.. PO R P S T PO

...........

A]

Appendix A
DERIVATION OF MULTI-PROCESSOR FFT COEFFICIENTS

A.1 INTRODUCTION

Our starting point in deriving the multi-processor FFT coefficients (W, R) is
the single-processor algorithm. In this case, an N-point transform has its butterflies
indexed from n=0 to n=(N/2 -1). For the algorithm illustrated in Figure 6, the depen-
dence of the weighting factors on the stage number, L, of butterfly calculations is
shown in Table 8. In terms of the general expression given in Equation (A-1), it is
readily seen that R =0 since the uppermost (n=0) butterfly at each stage has R=0,
s=N2-L and k=n modulo (2*!), n=0,1,..., (N/2-1). The expression for k contains the
modulo (2'-!) factor because k is periodic with period 2!

W, R(n) = W, R,"(n) (A-1)

TABLE 8
SINGLE-PROCESSOR FFT COEFFICIENTS

Stage Range of R Increment of R Period
@ (s)
log,N 0~(N/2 -1) 1 N72
log,N-1 0~(N/2 -2) 2 N/4
log,N-2 0~(N/2 4) 4 N/8
L 0~(N/2 -N2-1) N2-L 2t
1 0-0 N/2 N/N=1

- 851 -

et 8 e 2 8 e e B B)b Ao BB adn 8o 8

I WS VR S R P S

At n a A mw e A W A aa

S

VAT F.: U .

-

T T T T T WY b

A.2 INTERNAL BUTTERFLY WEIGHTS

Next, let us consider the relationship of the internal butterflies to the single-
processor algorithm. We wish to compute an N—point FFT by partitioning the compu-
tations among P processors, each having N/P = M points. We make the following
assertion:

The first log,M=log,(N/P)=log,N-log,P stages (the "internal' butterflies) of an
N-point FFlz can be computed by calling a "standard" single-processor FFT
subroutine with number of points set equal to M = N/P.

- The importance of the assertion is that we can execute the internal butterflies in the
b distributed—processor configuration by simply calling in each processor an identical
[' SPFFT program with the number of points equal to N=(N/P).

a To justify this assertion we first note that the SPFFT algorithm produces the
L. correct spacings between data points which participate in a given butterfly. At the first
L stage, L=1, this spacing is 1 unit, for L=2 it is 2 units, and so forth until at the last
- stage, L=L*=log,M and the spacing is (M/2)=(N/2P) units. The other requirement is
a5 that the correct weighting factors must be generated. First, we show that the weight
patterns required for the individual processors are the same for the internal butterflies.
From Table 8 we observe that the number of identical weight patterns, N, is

Number of butierflies
N, = = N2t
Period of weight pattern (A-2)

The minimum value of N_ for internal butterflies occurs at the maximum value of L
which is at the last internal butterfly stage where

L =L* = log,N/P
So, for this stage, the number of identical weight patterns is

N, = N/(N/P)=P
which is precisely the number of processors. Thus, each processor has one identical
weight pattern at this stage. For L{L®*, each processor has its number of identical

weight patterns equal to an integer power of 2. Therefore, for stages which can be
computed prior to transfers all processors have identical weight patterns.

Lo’

We now show that the complex exponential weighting factors generated by a
standard SPFFT in—place radix-2 algorithm depend only on the stage variable, L, not
on the number of points N. This means that the weighting factors produced by calling
an identical SPFFT algorithm in each processor with number of points M=(N/P) will
be the same as the first log,M stages of the same SPFFT algorithm executed for N
points. Thus, to produce the internal butterflies we can call the same SPFFT algor-
ithm in each processor with number of points equal to N/P.

BN A AR R AR A
. .) ‘{
.

- INPRAERERENCRA N A8 v
.. L T) .',.. DR
. et e e s AR A A

ot

The general expression for the weighting factors is

-5 -

a
E
K

....... Bandh ol o n G Y . -
Py it e tnl -

Wk = gd N = W (A-3)

where
W = ¢itn,

From Table 8, the range of R is 0 to N/2 - N2l in steps of N2-' and with a
period of 2L-!. Thus, there will be (21-!-1) steps of R and the resulting values will
be

L-1_
W0, wNIxz"'N’ wNZxZ"'N, AL)x2'N

Using equation (A-3), this is equivalent to the steps
wo, wixt wmet gyt | owaetl-nt
These steps depend only on the stage variable L.

Additional justification is provided by considering the War = Wy R values
produced by calling the SPFFT program with the number of pomts equal to N/P.
Again, usnng Table 8 with N replaced by N/P, R varies from 0 to N/2P -
(N/P)2L in steps of 2L N/P and with a period of 2-!. Thus, again there are
(2%-1-1) steps and the W, ® = W R values generated are:

N N
Wy, V2, W 2 N, wnnm"wr,

wo. .,
Mot T
wN/P() s

or, using Equation (A-3)

WO, wist wat gt owet-mat
which are the same as the values produced for the N-point FFT.

As an example, let’s compare the weighting factors produced by calling the
SPFFT algorithm with 64 points distributed among four processors with the weighting
factors generated during the first four stages of the same SPFFT algorithm called with
64 points. Calling the SPFFT algorithm with the number of points equal to 64/4=16
we obtain:

L=1: W,% W0 .= WO

L=2: W0 W, W0 . = WO, W, WO,

L=3: W,0 W,? wu, w5, w,,, = WO, Wi/, WA Wi WO,
L=4: w w w wo wl/16 wl/' wJ/lG vens w16

Calling the same SPFFT program with number of points equal to 64, but considering
only the first four stages (the internal butterflies), we obtain

L=1: W0, W0 .= WO
- 53 -

Pt 3 IS

ARV L G LIMPRPAAPATSS : §

,
r-
.
A

BRI OER e uiEihas mus Mt e e TE——— T T T T T T SRR A i KR BN S S i
E
- 2
4)
S 4
L 3
} - 4
- -
b =7 1 = ‘s
1 L=2: W0 W16, W0, .. = WO, Wi WO, . g
< - - ¥
2 L=3: W0 Wb W15, W2 WO, .. = WO, WIS, WIe, W, wo, 4
- L=d: W0 W' Wb, W2 W5, WD, WM, W WO, . &
n = WO, WI/I6 WIS Wi/ie wis wo

By comparing the W factors produced, we see they are identical.

To summarize, we have for the internal butterflies (L{L*)

+ks
W R(n) = W:' (n) where .

R =0

s=N/2L X

k=n mod(2-") , n=0,1,2,...,(N/P -1) -
We now wish to develop the corresponding expressions for the external butterfly .F
(L>L*) weighting factors.

A.3 EXTERNAL BUTTERFLY WEIGHTS

By inspection of Figure 17 we observe that the number of butterflies which
makes up a given weight pattern increases as the stage variable L increases. The num-
ber of identical weight patterns decreases correspondingly. Thus, for the external but-
terflies each weight pattern extends over more than one processor and the "starting
value' R is not zero in each processor as was the case for the internal butterflies.
This "starting value’ of the exponent is periodic, however, in the linear array of proces-
sors. Finally, the increment in R, denoted by s, is given by the same formula in Table
8 which applies for the internal butterflies. Let us now make these observations quanti-
tative,

First, let us consider the period of the starting value R. From Equation (A-2), -
the number of identical weight patterns, N_, is N2L. For the external butterflies Co
L=L*+1, L*+2, .., log,N, where L*=log,(N/P)=log,(M). It is easily shown that:

N, = P/2 for L = L*+1
and
N, = 1 for L=log,N.

Thus, the number of identical weight patterns satisfies

N <P,P22

PO B QANPGRS v RAABE

Py

- 54 -

&
3

- . « . . - . - v BN - : ’ Y
- Y - . 0 . - . » . o . y " v - . - N | = e . o § i § y %
P A ot PRy o Saamde 2a O VN VS VT VN VT I WS AT S I T R DA S W S i R R S S L S -l

so each weight pattern extends over more than one processor. The period of the weight
patterns and hence the value of R is given by the number of processors per weight
pattern, i.e.,

P 2Lp

N2t N (A4)

Thus, for each processor whose address equals an integer multiple of 2LP/N, R
begins a new period.

It remains to determine the values of R within a period. This is accomplished
by noting that within the first weight pattern, the value of R at stage L is equal to

the butterfly weight increment at stage L times the number of butterfliers per processor
times the processor address. Thus, within a period

2IN2Q N2Q
2P 2L+1p (A-5)

R, = N2LxN/2PxQ=

where Q is the processor address, Q=0, 1, 2, ..., P-1.
Taking into account the periodicity of R we have
N2Q 2Lp

mod —-
2L*|P N

R =

Thus, for the external butterflies, L>L*=log,M, we have

W,) = W, " (n)

where
N2Q 2Lp
R, =
2L+1p N

k=n, n=0, 1, 2, ..., (N/2P-1)
s = N/2b

- 5§ -

K Py I N mla s mlmtm_ml AN L o a_a_m_ %t oa a

'i" R
9 o
Al . v

vrrrryrry

—

B . - Detadiinie Sham, Biate N a3 - . i - -
- - n e T P U ey oy

Combining these expressions with those obtained for the internal butterflies

yields

where L*

0, for L{L* ('internal" butterflies)

N2 2Lp
Q mod — , for LO>L* ('external” butterflies)
2L+1p N (A-6)

n mod (2'), for L{L* and n=0, 1, 2, ..., (N/2P -1)

‘n, for L)L* and n=0, 1, 2, ..., (N/2P -1)

= N/2t

= log, (N/P) = log,M

To summarize, we make the following observations about Equation (A-6)

1.

It applies to a single processor (P=1) implementation as well as to the dis—
tributed processor case.

R, is the "starting" value for R in each processor. For the internal but-
terflies (LXL*), R_ is zero for all of the processors. For the external but-
terflies R depencfs on the processor number Q. This dependence is such
that R is periodic in processor addresses with period (2L'P/N) = 2L/M.

s is the "spacing' or increment in R. It depends on the stage number L
and the number of points N, but not on the number of processors.

The modulo(2'-') factor in the expression for k reflects the periodicity of
the internal butterfly weighting factors within a processor. For the exter-
nal butterflies this factor is superfluous because for L>log,(N/P), 2%!
> (N/2P -1) — each weight pattern extends over more than one proces—
sor. For the internal butterflies 21! is the number of butterflies in each
weight pattern. For example, in Figure 17 at stage L=2, a pattern consists
of the weighting factors WO, ., W* . In general, with 2'-! butterflies in
each pattern and N/2P butterflies in each processor there are (N/P)2L
pattern repetitions in each processor for internal butterflies.

Next, we must relate the weighting factors for the external butterflies in Equa-
tion (A-6) to those produced by the SPFFT algorithm. From Figure 17 we observe
that the memory spacing of the points which are paired together in external butterfly

- 56 -

Ca O APy S otk P A S PN S v e
U NP WERPER L 1 S R ey Y .

[P

LNV DU PLNS. ¥ WL S

—a R R

S
N
!
d
{
1
f

calculation stages is the same as for the L*th stage. This suggests the possibility of
calling the standard SPFFT program once for each external stage with the stage vari-]
able fixed at the value L=L*. In fact this can be done, but modifications to the pro-)
gram are required to generate the appropriate weighting factors given by Equation 1
(A-6). If we modify the SPFFT weighting factor expression to include a starting value
x and step y,and call the subroutine with number of points equal to M, the program

generates the weighting factors.

W, 58 = WEMr G,

The external butterfly weighting factors needed, as indicated by Equation (A-6), are

k=0, 1, 2, ..., (M/2 -1)

W, R(n) = WRM(n) = WRMH@AD § = 0, |1, 2, ..., (M/2-1)

To establish the necessary correspondence we require

2Lp
Qmod —
zl..ﬂp N

N2

and

y=s= N2t

-5 -

P S WP WG WD TP AL N VL I I A S

(R St Sues s b Jhut S e S 3

) NP

)

(A-T) b

” h."‘;" .A‘ o'

B
a

(A-8)

WP 5. § IR

¥ ¢ $ WAV

(A-9)

B § XODDER

T e
ol

L £ rv...:n.,E
A LL.A.‘J,‘“ JV EEPIAE Y SR PR DRI R PR S

h

d

= Appendix B

% BUTTERFLY SWITCH CONTROL EQUATIONS

B.1 INTRODUCTION

g The controller portion of the full butterfly switch uses a subset of the variables
I_. shown in Figure 13. This subset explicitly includes input and output address requests
- and acknowledges. Additionally, one data bit from the upper and lower data buses
LT (Ay and A)) is picked off for control purposes, and the principal controller output
(S‘FATE) is generated for butterfly steering. All controller variables are named in
Figure 14, where lower case signals are unregistered.

B.2 RULES AND EQUATIONS

The basic controller design philosophy requires that "next state” expressions be
written for the five registered outputs shown in Figure 14, allowing for desired features
and the effects of butterfly steering. In particular, the state and request outputs are
based on an update/recirculate strategy, wherein each output defaults to the recircu-
late or "no change' condition whenever the criteria for update (i.c., change) are not
fulfilled.

Several intermediate variables which simplify the derivation of the five output
variables are included in the following discussion. These intermediate variables are
IDLE,, (upper channel idle), IDLE, (lower channel idle), IDLE (both channels idle),
RS (recirculate STATE), NEWVAIL. (the new value of STATE upon update), RRU
(recirculate request, upper), and RRL (recirculate request, lower).

It is essential to know when either or both butterfly channels (upper, lower) are
active or idle, and this status information is not simply the result of decoding the
mode variables of Table 4. Butterfly steering must also be taken into account. From
the perspective of a requesting processor attached to the input side of a butterfly
switch, the proper acknowledge signal is directly available, but the appropriate request
signal depends on the prevailing straight/crossed condition. From Table 4, the IDLE
condition is the logical NOR of ACKA and REQA. For the upper channel,
ACKA=ACKAU, but

HUNEIG S NP it i S D

PO S

REQA=STATEREQAU _+STATEREQAL, (B-1) 1

resulting in .

- 58 - :]

]

1

Lt oo St it PRI N T S YO W A SAP TR R P S P Y N T T 1

'ﬂ:’vlvvr.f*l"‘r.‘r LD AP\ G g sl IFEOPRat Il A £
.) _ . e d R
' .

P I S PR U P S

Rl St i St Mt e JAS St Mt A Al A O el it el S T 200 e 2 SR b T

..........

IDLE; = STATE'REQAU _+STATE'REQAL +ACKAU_ (B-2)
Similarly,
IDLl::L = STATEREQAL +STATEREQAU _+ACKAL (B-3)

and fcr both channels collectively,

IDLE = IDLE,IDLE, = REQAU_+ACKAU+REQAL tACKAL, (B-4)

The rules for altering the STATE output include choice of update vs recirculate
and, if update occurs, the specification of a new value. Updating changes STATE as a
result of one or more requests. Recirculation maintains the present value of STATE,
in accordance with the following rules:

Recirculate STATE if: 1) either or both channels active, or

2) both channels idle; no requests present, or

3) both channels idle; impending simultaneous conflicting
requests.

Else update STATE.

Update and recirculate are complementary, and we define the recirculate STATE con-
dition as:

RS = IDLE + IDLE [REQAU,REQAL, + REQAU,REQAL,
(AU+AL)] (B-5)

When updating STATE, a new value (NEWVAL) is calculated according to the
following rules. NEWVAL is active if: (1) a single request with its accompanying
address bit is present while the other channel is not requesting, or (2) two simultane-
ous requests occur which are not in conflict, in the presence of the address bit from at
least one channel. Otherwise, NEWVAL is unused.

NEWVAL = REQAU,REQAL;A, + REQAU;REQAL;A, +
REQAU,REQAL A A, (B-6)

- 59 -

P I I P N 5 . e i} a. A,
a— e 2 ada = fmlad e an meanar aa e m e e

B
L("a -Il'v.-lE ; .‘_',’ _",v o

WL WURTE

A Radi T i A it Jhete Shhe At S~ Hiae Siiantd

The complete description of the "next value' of STATE, then, is

state = RSNEWVAL + RSSTATE (B-7)

where, in terms of the nth internal controller clock, STATE ,, = state,.

The update/recirculate notion extends also to the controller request outputs,
REQAU, and REQAL . Here the default condition is the updating of requests, and
recirculation is invoked only when protection is sought against some forbidden event.
The recirculate capability on requests offers protection against 1) preemptive requests
on a channel which seek to disrupt traffic on an opposite busy channel, and 2) simul-
taneous conflicting requests on both channels for which the outcome may be uncer-
tain. From the cases cited below, we may deduce the control conditions needed for
upper and lower request recirculate commands, RRU and RRL.

First, consider single requests on the upper channel, with the lower channel
active:

1) Condition: Impending conflict (cross request), STATE=0
Required Action: Update REQAL , recirculate REQAU =0

2) Condition: Impending conflict (straight request), STATE=1
Required Action: Update REQAU , recirculate REQAL =0

Next, consider single requests on the lower channel with the upper channel
active:

3) Condition: Impending conflict (cross request), STATE=0
Required Action: Update REQAU, recirculate REQAL =0

4) Condition: Impending conflict (straight request), STATE=1
Required Action: Update REQAL , recirculate REQAU =0

Finally, consider the case of a fully idle butterfly switch:

5) Condition: Simultaneous conflicting requests
Required Action: Recirculate REQAU _=REQAL =0

The recirculation capability associated with cases 1 through 4 prevents the
active channel connection from being usurped by a requester. Such requests are hon-
ored as soon as the active channel becomes idle, and no retry is required. Therefore,
preemptive requests are deferred, not denied. With resvect to conflict protection for
simultaneous requests (case 5), the controller is essentially asked to do a "no—op’, and
not forward either the upper or lower channel request. One channel’s request could
have been honored, but there is no apparent advantage in doing so. Recall that simul-
taneous requests are honored if not in conflict.

- 60 -

PSR DU W I R) e PSP Oy TN SR Y Y Y e a3 A S LA

PRI W P

{1.,» Padi e g oAl - S U cant Sbes el SEl SPGB Sl 2l Sl 2t aadh Ju) T T T Y — Caadic i) Ll Cafuia e e

The rules cited above can be coalesced to generate the logical expressions (RRU
and RRL) for recirculation of REQAU_ and REQAL . From cases 1, 4, and §,

RRU = REQAU,IDLE,IDLE, ‘A, STATE +
REQAL,IDLEIDLE, A, STATE +
REQAU,REQAL,IDLE(A, © A,) (B-8)

and from cases 2, 3, and §,

RRL = REQAU,IDLEIDLE A, STATE +

REQAL,IDLEIDLE A, STATE +

‘._r‘ ‘_7"-7_‘ yu?l “i. 7 :v- A ‘.r'v .'V"‘.. ..;‘4“('11" ﬁ~d1 - DR

REQAU,REQAL,IDLE(A, € A)) (B-9)

The "next value' expressions for request outputs are of the form REQAUo,,, =
reqauo, and REQALo_,, = reqalo, where n refers to internal controller clock cycles.
Recalling that update and recirculate operations are complementary, and that updated

requests are subject to butterfly steering, we have

EREOG«)
P N i

9 requ, = RRU (stateREQAL, + stateREQAU)) + RRUREQAU, (B-10)

¢
h_ and

reql, = RRL(stateREQAU, + stateREQAL,) + RRLREQAL,_ (B-11)

The final two equations in the controller set are expressions for steered
acknowledge outputs, i.e.,

acku, = state ACKAL, + state ACKAU, (B-12)
and
_— b
ackl, = state ACKAU, + state ACKAL, (B-13)
- 61 - ‘_'::'i

. . . . R
i_ - i Snmintiniutiedeeieminenid e i ot indad - i — ‘ : o

ARt Eas it It St e . n A . Paiin P S M 0 S0 AR s it vk et Sadie thes Sk M s s en e dan
b . . . -
=
r.< !
b

r-.n. f
E A Fortran program entitled NETROM generated the needed hexadecimal data -
S file for electrically programming the 2Kx8 butterfly controller PROM. NETROM g
rG forms a two—dimensional input array (2048 addresses by 11 bits) and performs the
. 1

computation embodied in equations (B-1) through (B-12) using Fortran logical vari-
ables. The resultant two—dimensional output array, after logical-to-integer conversion,
provides the controller PROM table. A sixth output, Staté, was added for hardware
fanout purposes.

R

-4
‘e
.

vv_,,f,vvv.,
L

e
XL

PRI | S R

s

NNSSIDY § Sy

¥ oo

A i

. . IR
Y § GRS

- 62 - g

B T P T T . S T . U - . R Y N P T O T o T PR

Appendix C
MULTI-PROCESSOR TIME-LINE

C.1 INTRODUCTION

The discussion presented in Section 4.7 provides the reader with enough infor-
mation to interpret the visual outputs of the demonstration package. However, that
discussion does not address the intricate timing of the events taking place in the vari-
ous processors. A multi-processor time-line provides this extra information.

The multi-processor time-line was used in the initial design of the TFM and
NP programs. This software design strategy is fairly general and well adapted to
proof-of-concept experiments in a research environment. The six-phase structure
described below is a natural candidate for any distributed task. Discussing details
below the level of the time-line is beyond the scope of this report. The interested
reader is referred to a collection of detailed flowcharts [25]) or to the actual assembly
code listings .

Carrying out the calculation of an FFT in a distributed way can be done with
four basic software components, one of them being needed only for cold starts (i.c.,
immediately after power-up). A multitude of other support programs are, of course,
required to (a) create the various object modules which are burned into EPROMS or
eventually downloaded into the distributed system prior to execution, and (b) to help
on the 470 side in uploading data and producing all graphical outputs. These pro-
grams are described in Appendix G.

The four software components of the demonstration package are listed below.

1. System Clear program (SYSCLR PGM): This memory initialization program is
executed in the TFM prior to actual DISP operations, but this is only
required after power-on.

2. Timing and Fault Manager program (TFM PGM): This program runs in the
TFM to supervise the DISP operations carried out in parallel in the NPs.

3. Nodal Processor program (NP PGM): One copy of this program runs in all
NPs.

4. Modified Versabug program (MOD VBUG): One copy of this program runs in
all processors, i.e., in the TFM and all NPs.

When running the demonstration package, each of the six processor boards can
be in either of two modes: (1) Modified Versabug mode, in which MOD VBUG is
running, or (2) Application Program mode, in which TFM PGM or NP PGM is run-
ning.

-63 -

NINDYRAL | SRINISIUDLISIARE t WO IS

i . AR A

: QRPN
i P T U Y Y S S

W R e TR LT e e e el . — T I gy Fangk aah 2 um g

Thus, theré are four different programs operating among six different processors,
not including the graphics-support programs and executives residing in the 470. The
following sections describe the transition mechanisms from one mode to the other
within each processor, as well as the communication and synchronization mechanisms
among programs running in separate processors during the six-phase distributed signal
processing sequence mentioned above.

C.2 EXECUTION PHASES
C.2.1 Phase 1: Start-up

From a programming viewpoint, all the processor boards are absolutely identi-
cal.” Thumbwheel switches located on the system front panel and connected to a par-
allel port on each board are used to provide each processor with its physical identity
(Figure 30), which is dictated by its actual connections to the butterfly network
through the sparing switches. Initially, the processor boards will behave on the basis
of that physical identity. If the thumbwheels are used to artificially inject faults in the
NPs, new logical identities will be assigned by the TFM through the communication
mailboxes. The processor boards can thus be thought of as always acting according to
their current logical identities provided the initial logical identities are taken to be
equal to the physical identities. With the initial identities properly dialed on the
thumbwheels, the power can be turned on and the whole system reset through the "sys-
tem controller” reset button.

It is important, at this point, to mention that the critical "look-for-letter' bit
(LFL bit), which is also part of the information available on the thumbwheel-con-
nected parallel ports (Figure 30) is currently reset. Furthermore, all boards are now in
Modified Versabug mode and quickly reach the Versabug modification (Appendix G),
whose gross structure is shown in Figure 31. Since the LFL bit is reset, all boards
bypass the Main Versabug Patch, which is described as part of phase 4. Since the
modification to Versabug is inserted in the command input loop, the situation at the
end of the start-up phase is as follows:

1. The TFM continuously monitors the terminal connected to it for new com-
mands

2. Each NP continuously monitors the serial port where a terminal could be con-
nected, as well as the LFL bit for a change of state. Under normal circum-
stances, no terminals are connected to the NPs, and thus no command is
really expected. For debugging purposes, however, one has the option of
switching the TFM terminal to any NP, or even connecting separate terminals
to any number of NPs as needed.

% From a hardware viewpoint, the microcomputers generally differ through a few
"jumper" settings, namely the ones related to the "system controller' function and the
Versabus-access priority levels.

FEPU- PN G A S Y PP I AP e O Y

.......

TV TR TR ROCHRO T uRey 0 VR

'.L.L.A_n P SRR

“LOOK-FOR-LETTER"” BIT 125296-N

PHYSICAL IDENTITY

A
/ N\
TFM
PARALLEL NP
PORT PARALLEL

PORT

THUMBWHEEL
SWITCH

Fig. 30. Thumbwheel Switch Inputs

. I T
N P TIIRYEILT

PRI B LN

rand r"YWv-wv
'r,-"~'1K|At' .

.

- 65 -

Yy s .
RN 7
O .

$’9
PSSR . & AB

- - PRI SN DD DT ST DA S S PR S S I S s U R NP G NP

ﬂv—'~',~v_-" P Attt i i S S St e i A e A T T AT APS A SN et R b Srontiee g v e giesane e e o e g e RS S S
- - . L . . AR AR P AR W T T
. .o A RN

YES
TFM BOARD

:
i
5
|
)

MAIN VERSABUG PATCH

VISIT MAILBOX
AND
TAKE APPROPRIATE ACTION

-

NP PGM 3

3

‘.”]

Fig. 31. Top-level Flowchart of Versabug Modification \
X

k

C.2.2 Phase 2: Memory Initialization

AR
L ol il

The memory initialization phase is required to avoid the parity errors which
occur when memory locations are first read.

LA & AN
AT v

\ :
. E
- c221 TFM ;
:i The MOD VBUG loop described above is first broken by the DOWNLOAD N
a command which loads the SYSCLR PGM in private TFM memory. It is broken a

- second time by a RUN command which forces the TFM to temporarily leave the

= Modified Versabug mode to run SYSCLR.

- - 66 - ¢

4

e T e S P i~ -t G, S R TR A i Pt T T Y o T T Y TR T S TN TS TR TS TN Y TN T wTw Cwerwg

The SYSCLR PGM initializes the mailboxes in the load-and-test memory to
avoid parity errors when the NPs start looking at their mailboxes after discovering that
the LFL bit is set. Clearing the rest of the load-and-test memory is not really neces-
sary, but this is nevertheless done to bring it into a known initial state. This program
also initializes the TFM private memory because a later operation involves a transfer
to load-and-test memory of a large block of code, not all of which would otherwise
be initialized.

With the completion of the SYSCLR PGM, the TFM returns to the Modified
Versabug mode, waiting for subsequent commands to be entered.

C222 NPs

The NPs operation has not changed since phase 1. They are essentially waiting
for the TFM to set the LFL bit, and this is done during phase 3.

C.2.3 Phase 3: Downloading and Preliminary TFM Operations

During this phase, the user downloads all the required object code into the
TFM memory address space (i.e., private and load-and-test memory) and starts TFM
PGM. After carrying out a number of preliminary tasks, this program transfers control
to the Main Versabug Patch in all nodes. Note that NP PGM is not activated until
the next phase.

C.2.3.1 TFM

The MOD VBUG loop is again broken to DOWNLOAD in a single operation
the various modules.!® Depending upon their starting address, these modules will be
directed to either private TFM memory or to the load—and-test memory. In fact, the
only module to go directly to load-and-test memory is the one containing the transfer
tables (Appendix 32). These tables are of no use to the TFM and will be picked up
later by the NPs as needed. The private memory naturally receives the TFM PGM
but also, somewhat unexpectedly, the NP PGM as well, for the simple reason that a
program module must be downloaded in the part of the addressing space where it will
ultimately run. Since all boards have the same addressing spaces, it is natural to tem-
porarily store NP PGM in the TFM private memory, provided it does not overlap
with any other module. The multi-processor FFT module (MPFFT) is used both by
the TFM (to precompute the results) and by all NPs, but is not, strictly speaking, a
part of TFM PGM or NP PGM. In spite of this, it is conceptually useful to treat
MPFFT as being an integral part of both programs.

The MOD VBUG loop is broken once more to start TFM PGM, thereby leav-
ing the Modified Versabug mode (in the TFM only) until the end of the demonstra-
tion program. Control has thus effectively been transferred to the Application Program

10 The downloading time of the whole demonstration package is limited by the 2400
baud link to the 470 and takes about 4 minutes.

- 67 -

PR ;e .
E . o I:

. v . R AR

.'a a._a P IR . R N -t

EHDET A VI AT SUAP LI VLA L. WL T P S SRy S G oG H P, R U T G PO S PG UNE VL VRR R W O G I T L a e a.m e d

mode (in the TFM only) which carries out the following preliminary operations.

1.

Initialize the mailboxes with a properly selected code which will place the NPs
in a hold state until further notice, even after the LFL bit becomes set.

. Set the LFL bit, thereby allowing all NPs to safely access their mailboxes for

the first time.

. Transfer the NP PGM from its temporary location in private TFM memory to

load-and-test memory (this includes MPFFT). In contrast with the initial
download, this transfer can be done to an arbitrary address, by moving the
NP PGM, one word at a time, under TFM PGM control. Moreover, the ear—
lier initialization of the TFM private memory guarantees a transfer without
spurious parity errors, without having to worry about the "gaps' generated by
the "DS" (define storage) assembler directives which reserve memory locations
but do not put anything into them.

Generate the data set to be transformed, typically a symmetrical pulse of selec~
table width!! and compute its conventional (i.e., single-processor) FFT.

. Transfer the data and the precomputed results to load—and-test memory, where,

together with the transfer tables and NP PGM, they are accessible to all NPs.

. Set-up the hardware sparing switches to provide the default system configuration

in which the NP logical identities are equal to the physical identities.

Place a first letter in each of the NP mailboxes, which will force them to carry
out a sequence of tasks in preparation to the actual distributed calculations.

C232 NPs

Up to the very last TFM operation, the NPs are still in Modified Versabug

mode. While they initially bypassed the Main Versabug Patch, they start going through
it upon detection of a state change in the LFL bit. Even so, they are still being held in
the same mode because of the absence of an appropriate letter from the TFM. The
end of phase 3 corresponds with the reception of the first letter by each of the NPs.

It should be noted that in the usual case where FFTs are computed more than

once'? all the operations described in this and the previous phases for the TFM need
only be done once, prior to the first FFT calculation.

11 As announced earlier, an external data set can be used if one wishes. It must be
downloaded separately in private TFM memory before running TFM PGM.
12 This would be done to emulate a real system and/or demonstrate reconfigurability.

- 68 -

,
g o A 0)
RO ST |

IS 54 WARIITrOrOr-§ 1 TNy

-

SIS

b Aue e aae Beas 2o)

C.2.4 Phase 4: Loading and Preliminary NP Operations

This phase encompasses all the preliminary operations carried—out by the NPs
before actually transferring control to their personal copies of the NP PGM, thereby
leaving the Modified Versabug mode until the end of the demonstration. B

| VPR

C.24.1 TFM »

o

The TFM PGM is running in a tight loop waiting for the first letters generated b

by each of the NPs to announce the completion of the various tasks described in this 5

and part of phase 5. R

9

. h
- H

ly

C242 NPs

Each NP is busy executing the tasks specified in the Main Versabug Patch,
namely: (1) acknowledge the first letter just received from the TFM, (2) initialize the
NP private memory to restore it to a known state, (3) load a copy of the NP PGM o
from load-and-test memory, (4) transfer control to NP PGM, thereby entering the ?
Application Program mode.

All of the NP operations mentioned up to this point (i.e., in this and the previ- .
ous phases) are not repeated after the first FFT in the case of repeated calculations.

It was found necessary to introduce artificial delays between the successive
deliveries of the first letters to the NPs (see step 7 in phase 3), in order to limit the
significant bus contention which would otherwise take place during step 3 of this
phase. If the delays are removed, the demonstration package becomes less reliable

(#6--28].

C.2.5 Phase 5: Distributed Signal Processing

The distributed FFT or, more generally, the distributed operation at hand, is
executed during this phase. Whereas the previous phases are largely independent of the '
particular application at hand, phase 5 is specifically tailored to the 1-D FFT. Even '*
so, the general strategy and the critical pieces of software can easily be adapted to a
number of other applications.

C.2.5.1 TFM

In this phase the role of the TFM is essentially limited to the monitoring of the
distributed operations carried out in the nodes. The TFM collects task—-completion
messages through the mailboxes, and subsequently acknowledges them. In some
instances, the message from a given NP is acknowledged immediately after arrival in
the mailbox and subsequent detection by the TFM. In this case, the NP does not wait
for the acknowledge before continuing with its next task; it will not, however, put any

R T L
PRSI ST I,

PRALNIFIPR § GRINEE

- 69 -

- o FULIY S S S 1 2 L - RPN G WY . a W - . o Al a _a _a . _a - v N - San & B 2. 0 B MY A U Sy Ry

new message in the mailbox as long as the previous message has not been
acknowledged by the TFM. The completion messages falling in this category are iden-
tified on the time-line with a "NO SYNCHR" label, and help the TFM to keep track
of the progress accomplished by each NP. Under normal circumstances, these mes—
sages are not really required for a flawless execution of the application program.
They are, however, extremely useful for debugging purposes in a developmental phase,
and could certainly be exploited for reconfiguration purpose in the presence of true
internal faults.

The remaining messages are labelled with "SYNCHR" on the time-line and are
highly critical because they prevent any slippage in epoch . To achieve this, the TFM
waits until all corresponding completion messages have been received from all NPs
before acknowledging any of them. On the other hand, each NP waits for an acknowl-
edge before proceeding. As will be seen on the time-line, synchronization through
messages takes place at the epoch boundaries, i.e., after the "internal’ butterfly calcula—
tions, and after each of the "external" butterfly stages.

Besides these communication and synchronization tasks, the TFM also resets the
LFL bit and issues a hardware trigger to the NPs at the appropriate times.

C.2.5.2 NPs
The NPs perform the following arithmetic and transfer operations.

1. Load, on a logical identity basis, the appropriate transfer tables from load-and-
test—-memory to private TFM memory.

2. Load, on a logical identity basis, the appropriate portions of data and reference
results from load-and-test-memory to private TFM memory."

3. Report to the TFM that the loading from load-and-test memory is completed,
and then proceed to the next task without delay. As far as the TFM is con-
cerned, these task completion messages constitute the first clue that the NPs
have effectively received their first letter (in phase 3), thereby allowing the
TFM to reset the LFL bit.'*

4. Wait for reception of the hardware trigger sent by the TFM through a parallel
port. Even though using and waiting for the trigger is not required, this consti—
tutes a means of starting all NPs, as simultaneously as possible, in their
actual distributed processing operations.

5. Compute all stages of internal butterflies, report to the TFM that the current

epoch (#1) is completed, and wait for the step-locking acknowledge, which
indicates that all NPs are ready for the next epoch.

13 The reason for decoupling steps 1 and 2 will become clear later.
14 This facilitates recovery in case of abnormal termination. All processors are held
in Modified Versabug mode as a result of this precautionary measure.

-70 -

bk

B b il cndhedoiched S

6. Configure the network for the first series of interprocessor transfers, report to
the TFM, and proceed to the next task without waiting.

7. Transfer intermediate results over the network, report to the TFM, and proceed
to the next task without waiting.

8. Compute the first stage of external butterflies, report to the TFM that the cur-
rent epoch (#2) is completed, and wait for the step—locking acknowledge
indicating that all NPs are ready.

9. Configure the network for the second series of interprocessor transfers, report to
the TFM, and proceed to the next task without waiting.

10. Transfer intermediate results over the network, report to the TFM, and pro—
ceed to the next task without waiting.

¥ 2 COTND

11. Compute the second stage of external butterflies, report to the TFM that the
current epoch (#3) is completed, and wait for the step-locking acknowledge
indicating that all NPs are ready.

W Y N

12. Rearrange the results from pseudo—normal to normal order by using the net-
work twice. The successive steps involved are very similar to the steps 9, 10, 6,
and 7 taken in that order, but have been deleted from the time-line for con-
ciseness.

kX A

13. Check the NP results against the corresponding portion of precomputed results
(previously crossloaded from load-and-test memory), and/or transfer the local
results to load—and-test memory, report to the TFM, and then proceed to the
next task without delay.

i\ § G

As explained earlier, the user may want to demonstrate either the distributed
calculation of a single FFT, or simulate the operation of a real system where succes-
sive frames of data are loaded at regular intervals and then transformed. In the first
case, the next operations are those of phase 6 (see below). To emulate the second, one
can continuously reload the same data set from the load-and-test memory and com-
pute its FFT. This is easily achieved by branching back to step 2 in the current
phase. Furthermore, if an externally—injected fault is detected anywhere in phase §, the
TFM reconfigures the system, and the distributed processing resumes with step 1.

oTYTYTY)

S

C.2.6 Phase 6: Termination

R A 4 .. . 1] .
e e

Each NP reports to the TFM that it has reached the end of its distributed signal
processing operations (either after a single or a larger number of FFTs), and it subse-

quently returns to the Modified Versabug mode. After collecting all related messages, '-4
the TFM zalso returns to that mode. At this point, the state of the system is, for all 1
practical purposes, identical to that of phase 3, just after the download. The demon- .
stration program can be re-run simply by executing the TFM program again. 'l
]
ol

PN ¢

- 71 -

P A

RN T T P W W P N PP L P UL UL P S WLy s . . Py y PPN D L T D DU D U PPy

e

TP
. I NIED .

Appendix D
TRANSFER TABLES

D.1 INTRODUCTION

There are a large number of ways to calculate a multi-processor FFT. Section
4.6 describes the approach that was chosen for the demonstration program, but it is
not unique. To accommodate alternative choices early in the software development
cycle, a general transfer strategy based upon look-up tables was selected. This
approach would not be chosen for an operational system because it is rather slow and
requires significant memory space for the tables. However, the look—up table approach
is quite general and could handle the transfers of many distributed calculations, with—
out any modification to the assembly language data transfer subroutines.!’ Thus it is a
reasonable choice for proof-of-concept experiments.

D.2 TERMINOLOGY

Figure 32-a indicates the data transfer that would occur for two processors exe—
cuting an eight-point FFT. Unfolding the diagram yields Figure 32-b, or more gen-
erally, the "triplet' configuration of Figure 32—c. In writing programs for a distributed
system, it is often convenient to imagine oneself located in some node, referred to as
the local processor, and receiving data from the source processor while sending data
to the destination processor. For all FFT transfers, the source and destination are
always the same processor, but for other algorithms, this may not be the case.

13 Strictly speaking, this is only true for situations not involving broadcast.

-72 -

P S TN TP Y WP, - - (2 T VAT W G R W] 3 P R PPN PN D 1 (3P - R Y a a3 oy

- T R Saehe Siave Shet Ahai s Sttt S M Snaty ST Ar-Sad 20 dune B Anin A Shen Jhen T Shes Jnen

l"
- Ao

endinc. oy N

PR "

T, -
POV

o

M aas 2 P)

N

.

ISPRASS I PR DO .,

I

5

-

Xl e e e o
AL

i

(@)
; rom
E- .i 4] 0 o 2] .
o 5] \ L ! / 3] b
L1op |6 \ 4l e [2 / 6] p 11
|
L 5 3 L
(b)

SOURCE . LOCAL o| DESTINATION
PROCESSOR *| PROCESSOR " PROCESSOR
()
r=1 [l
@ 1 O
L ENQNE— L
I |
! IoP, 3] \ 3 2, 3 / El R
| 4] 4 4 4] L
SOURCE LOCAL LOCAL DESTINATION
OuTPUT INPUT OUTPUT INPUT
BUFFER BUFFER BUFFER BUFFER
(@

Fig. 32. Transfer Table Example

LBl s v e gran g |

M > o) AENCERENCER SRR 2 4 S -1 - - i

(:‘ I B R e L A et . I S e Mk agh i Shant Mt e Jente of = T — T .
-~ - g it Al Iy " T ol et e

D.3 TRANSFER TABLE STRUCTURE

Before describing these tables, it is convenient to redraw Figure 32-b as shown -
in Figure 32-d, where the single-processor memory locations (which are irrelevant to 4
the transfer themselves) have been replaced by indices identifying locations in the input
and output buffers of interest in the source, local, and destination processors.

9. The parameters SRC and DST identify the source and destination processors. The
array SM(i) (Source Map) indicates where the ith element of the source output buffer
goes in the local input buffer (a zero indicates that the related element does not leave
the source processor). Similar interpretations can be given for LM(i) (Local Map)
and DM(i) (Destination Map). To illustrate, the table corresponding to the transfer
shown in Figure 32—d is shown in Table 10.

(4]
b
P The transfer table for a given processor and a given transfer is shown in Table

a

TABLE 9

M s e o0

FORMAT OF TRANSFER TABLE

SRC,DST
SM(i)
LM() i=1,2,...N/P
DM(i)
TABLE 10 X
TRANSFER TABLE EXAMPLE .3
1,1 X
3,4,0,0
1,2,0,0
0,0,1,2.

This is all P, needs to handle the data transfer. Furthermore, with the exception of
the SRC and DST parameters, the tables are identical for all transfers and all proces-

SOrs.

SRR IR -G Oe

ey

s
f
s
4
f
]

~74 -

.
imnta ol onnossosncn ol L ad

D.4 SOFTWARE

d it e nntden Ll

From Figure 32-d it is clear that the transfer operations at each node can be
decomposed into three concurrent tasks: (1) the transfers from the source, (2) the “y
internal rearrangements, and (3) the transfers to the destination. These tasks are han-
dled by a subroutine and two interrupt handlers.

The subroutine initiates the first transfer to the destination and then proceeds to
the internal rearrangements. Acknowledgements from the destination and requests from v
the source reach the local processor in the form of interrupts, which are processed by ‘4
the first interrupt handler. Each byte transfer from the source or to the destination 5
involves a full handshake via interrupts, as well as the use of a timer. If a new]
request or an acknowledge is not received within a prescribed period of time, addi-
: tional interrupts are used to communicate the timeout information to the local proces—
[' . sor, where they are processed by the second interrupt handler. Therefore, in the midst
of a transfer, four different devices may, at any time, interrupt the internal rearrange-
ment, i.c., the input and output ports, and two of the on-board timers.!¢ This happens
simultaneously in the four nodes, so that a total of eight ports and ecight timers are
likely to interrupt various parts of the distributed processor at any time.

FONY B i) RENCAKIAN

h ok i iy e
N e
[S

Since each byte transfer is accompanied by a full, timed handshake, a timer
must be started and stopped four times and four interrupts must be processed for each
complex word. In addition, after completion of all transfers and rearrangements, a
final transfer of the full input buffer into the output buffer is needed prior to the
external butterfly calculations and the next transfer. This is also carried out by the
abov+ men.ionzd subroutine, which waits for the end of the interrupt-driven transfers
before dcing this final internal move.

D » § IR

.
Y

/S R AL
. GO

NEASY 4, o LIS

PR

v—ar e e et

—— s o e s e

16 Detailed information on the use of the parallel ports and timers will be found in
(29-32].

- 75 -

[P AU Y TP R R SRS U S TR RN WIS NPT SRP AR NPV ST IR § . 2 - . 2 ' . Al A~ Aala_m . alal . A 4 .a . m A A& m _a .ala®al,

R
4
1

VRN e
4 T ‘ -

- 'n.l!
- "‘ -

EatC A N - AR R W ——— e Sen i e S e

Appendix E
MAILBOXES

The distributed FFT calculation relies on the exchange of information between
the TFM and each of the NPs, especially on the proper synchronization of all NPs by
the TFM to prevent any slippage of epoch. This is achieved through letters deposited
and picked—up by the various processors in a set of "mailboxes" located in load-and-
test memory, where they can be accessed by all processors. Each NP (including the
spare) possesses its own private mailbox (MBX), which consists of eight contiguous
16-bit words of memory.

Two options were available for the assignment of MBXs to the various proces—
sors. The MBXs could indeed be assigned ecither on the basis of physical identities
(static assignment) or on the basis of logical identities (dynamic assignment). In the
first case, a given set of 16 bytes of memory is allocated once and for all to a specific
processor board. The drawback with this procedure is that the user and the TFM
must continuously know the current relationship between logical and physical identi—
ties, in debugging mode and upon detection of an internal fault, respectively. In the
second case, the same set of memory locations is assigned to the processor having a
specific Jogical identity. This makes it easy for both the user and the TFM to inter-
pret the MBX contents, but this requires special care at reconfiguration time to avoid
conflicts when the MBX assignment changes.

The logical assignment has been adopted since it greatly simplifies the debugging
and the error analysis by the TFM, because the MBX contents can then be interpreted
independently of the current system configuration. With this choice the first MBX is
always assigned to the processor with current logical address zero and the last one to
the current spare (Figure 33).

The format of each MBX, and consequently of each letter, is shown in Figure
34. The single most important part of the MBX/letter is the first 16-bit word. The
seven remaining words contain parameters which are used only in the presence of
internal faults. These parameters have been found useful in the integration phase to
reconstruct the series of events which caused the improper termination of a run. For
the same reason, they would greatly help the TFM in its analysis of system status
upon discovery of one of more internal faults.!”

The most significant bit (MSB) of each MBX is a semaphore (S) which, in con-
junction with the special purpose "Test-and-Set' (TAS) instruction of the MC68000,
avoids any conflict or confusion in handling the MBX content. More specifically, one
wishes to avoid the situation where two or more processors read, write, or test the
same memory location, without one being able to tell with absolute certainty the final
status of that location. Without the above mechanism (Semaphore plus TAS

| 3

17 These parameters are not examined by the current version ofg¢he TFM program,
which deals only with external faults.

<76 -

LI S G Sy . P PN AP BIPWIP WU PO W IS U PRI W N SNl S N Y

T Vv =y

r

PUVY 2 SRS

:-‘j

aas e XX

oy St ik o AB o 2E e ..‘.l’ o

MANAGER
PROGRAM
LET‘I’ERS// I \\Lensns
LOAD-AND-TEST Py's . N . SPARE's
MEMORY MAILBOX MAILBOX

LETTERS ‘ 1 LETTERS
Po's cos SPARE's
PROGRAM PROGRAM

Fig. 33. Communication and Synchronization Mailboxes

STATE (Source of Message, Full or Empty)
L
MSB SXXT : MESSAGE PARAMETER No. 1 PARAMETER No. 7
]
- 16 bits —
MESSAGE TYPE COMMAND/COMPLETION = 0
ERROR = 1
ACCESSIBLE = 0

SEMAPHORE
’ USED

[}
-

Fig. 34. Mailbox Format

instruction), confusion is bound to arise since in general the TFM and one or two
NPs!® compete for access to the same MBX, virtually at the same time.

To access a MBX, a program uses the "indivisible" instruction TAS which reads
the first byte of the MBX, sets the MSB (S) and displays its previous state through the
condition code. If S was previously set, the MBX is clearly being used by a competing

18 This only happens during reconfiguration.

-77 -

,,,,,,

processor and should not be disturbed, otherwise it is available to the processor of
interest, but not to the others. If one always uses the TAS instruction to read, write,
or test the content of a MBX, no confusion will ever arise. However, the semaphore is
not a hardware lock and a strict software discipline is required if one wishes to use it

properly.

The next two bits of each MBX specify the state of the MBX (code XX). The
first bit specifies the source of the current letter (0=TFM, 1=NP). If the second bit is
equal to the first the MBX is "full’, otherwise it is "empty'. More specifically, the con-
vention for the MBX code XX is as follows:

1. XX=00 indicates that the last letter was put in the MBX by the TFM and has
yet to be read by the NP

2. XX=01 indicates that the last letter was put in the MBX by the TFM and has
already been read by the NP

3. XX=11 indicates that the last letter was put in the MBX by the NP and has
yet to be read by the TFM

4. XX=10 indicates that the last letter was put in the MBX by the NP and has
already been read by the TFM -
Therefore, after accessing a MBX through proper handling of the semaphore, a
processor can determine the state of the MBX and act accordingly. For example, if a
NP has previously reported that the network was successfully configured and finds a
code XX=11 in its MBX while attempting to report the end of the corresponding
transfer, it is clear that it must wait until the TFM has read the previous message.

While the next bit (T) in each MBX distinguishes the error messages from the
others (0=command/completion message, 1=error message), the remaining 12 bits are
used to identify a specific message among these two classes. A message with T=0 and
a given 12-bit number may be either a command or a completion message. These are
distinguished through the first bit of the code XX. Indeed, command messages are
always issued by the TFM (XX=07), whereas completion messages are always issued
by the NPs (XX=1?).

The demonstration package comprises 4 command messages, 7 completion mes—
sages, and 17 error messages. The first letter sent by the TFM to the NPs is the only
command message mentioned on the multi-processor timeline of Appendix C, since
the others show up at reconfiguration time only. The completion messages, however,
all appear at various points on the timeline. The error messages have, without excep—
tion, appeared at one time or another in the MBXs during development and have
greatly eased the debugging. Similarl;, they should be fully exploited to reconfigure
the system upon discovery of some internal fault(s).'* For a detailed list of all the
messages, including their parameters, the reader is referred to the detailed flowcharts
given in [25].

19 This is not done in the current version of the demonstration package which only
deals with externally-injected faults.

- 78 -

P SR . ~ N . L - .« . L. .
2 P T W S U UL G SR WU Y A S ST ST S UL

-

™

-1

P S
St S
[:‘. RPN RTAN

yoy

Sl s ¢ T To"
‘lf‘1~o AR
.

L o
(]

™y

Appendix F
RECONFIGURATION

Upon detection of a manually-injected fault, a NP immediately reports the fact
to the TFM by depositing an error message in its MBX. At that time, the TFM is
probably busy acknowledging messages announcing the completion of a given task,
such as the data transfers or the external butterfly calculations. Furthermore, the error
message(s) is discovered only as the TFM looks at the MBX of the faulty processor(s)
in its attempt to find and acknowledge the current task—completion message. As a
result, if the error message is sent before the faulty NP has deposited the completion
message currently expected by the TFM, the error message will rapidly be discovered
by the TFM. Otherwise, it will not be discovered until the next round of acknowl-
edgments.

Furthermore, some task completion messages cause the processors to be syn-
chronized while others do not. The forced synchronization case is the simplest, since
none of the NPs are allowed to proceed further until they have all reported. If one or
more processors report an error, the situation is frozen and thus well defined .

If the message does not force synchronization, some of the NPs may already be
engaged in subsequent operations when an error is discovered by the TFM. In this
case, the situation is more complicated, and true internal faults are even likely to
develop for timeout reasons if the subsequent operations involve data transfers among
processors. These problems could be avoided by requiring synchronization each time a
message is sent to the TFM, but this would probably degrade the overall performance,
since the processors would be forced to wait when there would otherwise be no need
to do so.

Note that the precise behavior of the TFM upon almost-simultaneous injection
of two or more faults depends upon the exact timing of the injections. The TFM may
(a) either quit immediately, or (b) reconfigure upon seeing a first fault, and then quit
after detecting a second fault.

Thus, after finishing a complete series of acknowledges and discovering one or
more error messages, the TFM analyzes the situation based solely on the MBX con-
tents. In the meantime, the "faulty' processor(s) has transferred control to a reconfigu—
ration subroutine where it await instructions from the TFM, while the "healthy" pro-
cessors are waiting for an acknowledge which will never arrive as a result of the
fault(s) just discovered by the TFM.

The error analysis by the TFM is straightforward in the case of externally-in-
jected faults. This analysis is the only part of the reconfiguration procedure which
would need to be refined and expanded to deal with all the errors which could be
reported by each node in the case of an actual failure. Currently, the TFM does not
attempt to reconfigure the system if more than one (external) fault is discovered. If
only one fault has been reported, the TFM interrogates the spare through a command

-79 -

ool ML PRI S s P . LI ST L W AT ST T A N ORI IPAT SN A WY SR L Y LTI SRS N S Y U Y

message deposited in its MBX to find out if it is usable, i.e., if its fault-injection
thumbwheel is still in its original position.2? If the current spare is found "healthy",
the TFM then completes the system reconfiguration. Otherwise, in the case of multiple
faults, it commands all NPs to quit via a MBX message and to return to Modified
Versabug mode.

In the case of a single externally-injected fault, the processor which is found
“faulty" becomes the new spare.?! To perform the reconfiguration, the TFM deter-
mines the physical identity (ID) of the faulty processor which, so far, is known only
through its logical ID as a result of the fact that MBXs are assigned on the basis of
logical IDs. Since the only piece of information kept in memory by the TFM is the
physical ID of the current spare, the TFM establishes the current relationships
between logical and physical IDs and then, based on the logical ID of the faulty pro—
cessor, determines its physical ID. This is also the physical ID of the new spare which
is used later to set the sparing switches. The mapping between future logical and phys—
ical addresses is performed next. Finally, the mapping between current and future logi-
cal addresses is created.

Figure 35 illustrates the case where the current spare is the processor with phys—
ical ID "1" and a fault is reported by the processor with logical ID "2". The figure
shows (a) the current logical-to—physical ID mapping, (b) the future logical-to—phys—
ical ID mapping, and finally (c) the current logical-to—future logical ID mapping.

After these preliminary calculations, the TFM proceeds with the actual reco-
nfiguration. The value of the future spare is used to set the sparing switches, while
the assignment-transition vector is used to deposit in each MBX a message containing
the new logical ID. After sending these reconfiguration commands to all processors
(including the "old" and "new" spares), the TFM returns to its task of monitoring the
DISP activities. In the meantime, each NP releases it currents MBX, waits for its new
MBX to become available, and then recomputes a few pointers, reloads the appropri-
ate transfer tables and finally resumes its endless calculation of FFTs .

In conclusion, the reconfiguration procedure is probably the most delicate part
of the software because of the large variety of unpredictable situations that may occur.

2 This is necessary to cover the situation where the current spare is the result of a

previous reconfiguration, and also the unlikely case where a fault would have been
inadvertently injected in the spare!
21 This would not necessarily be the case in an actual system failure.

~ 80 -

[N L VTPV AL

PO SRS

I o SR

17, fal " S AT T

VIR

4

e e e g

| o Pt At A 2t e St S MadE D it i st Sl Jntl i e SN et S d S -2 A dirag S-hen i B RA R~ B Bt wa S S e S Sk vy e L s S e e e S i I
! . . . R Rt Pl AR .) A it MR -

- |

T

1
:
;
~
~
-
1
.
-
DATA: PHYSICAL ID OF CURRENT SPARE = 1 o
LOGICAL ID OF FAULTY PROC. = 2 4
r j
CURRENT I 7 j
. LOGICAL o 1 | 2 | 3 4
)
} f
@ — { | CURRENT !
© PHYSICAL 0 2 | 3 | 4 1
1D L _J
PHYSICAL ID OF FUTURE SPARE = 3 FUTURE CURRENT
L SPARE SPARE
(CURRENT
LOGICAL 0 1 2 3 4
ID
(b) =~ 4
PHYSICAL ID
IN FUTURE 0 1 2 4 3
ASSIGNMENT
.
r
CURRENT
LOGICAL 0 1 2 3 4
D
c) —p ¢
FUTURE
LOGICAL ID 0 2 4 3 1
L

Fig. 35. Reconfiguration Example

~ 81 -

¢
s . . . P . . <. -t - - - . Lo - .
& ot e Besiom 4 F JIPRE SN TR S TP - PO D VT S) e a la Bk b o Bt n B alalalatiate . alh A A A N Al at 4

Appendix G
UTILITY SOFTWARE

G.1 MODIFICATIONS TO MOTOROLA VERSABUG

Each Versamodule in the test-bed was equipped with a Versabug Debugger
firmware module described in Section 4.8. Versabug runs in a tight command input
loop awaiting user commands. For the test-bed, this loop was modified to examine the
upper byte of parallel port 2 to determine whether the demonstration package is being
exercised. With a positive indication, the modified Versabug takes extraordinary
actions depending on its own identity (timing and fault manager or nodal processor,
including spare) in accordance with the demonstration program.

Because Versabug is in firmware (eight 2K x 8 EPROMS occupying 16 Kbytes
of address space (FOO000 to FO3FFF)), modifications to the program required new
EPROM generation. The Versabug firmware is configured as 4 pairs of "odd-even"
byte EPROMs. Thus, to patch in a jump to unused Versabug address space required a
change to two EPROMSs (an odd byte—even byte pair).

The Versabug modification was developed and assembled with the cross assem-—
bler. The resulting object code module was then run through a format conversion pro-
gram described below, whose outputs were an "odd-byte" file and an “even-byte" file.
These files were used to generate new EPROMS containing the extended Versabug
code. This same technique was used modify the Versabug "upload' command to make
it compatible with the existing 470 protocol.

G.2 ADJUNCT PROGRAMS

A wide variety of programming was carried out in support of the three major
system programs; the TFM, the NP, and the multi-processor FFT subroutine. Some
of these programs were written in MC68000 assembly language. Others were con-
structed using Fortran on the 470 and still others used the 470 CMS EXEC facilities.

One subset of these programs is assimilated directly into the demonstration
package. Another subset is invoked by the demonstration program System as it oper—
ates. A final subset contains in-house utiiity programs operating outside of the main
demonstration package.

- 82—

L R T CHICHUNIL SN S WU SR SV TOY NSaY VAP-UY SO0 SO S S G S S U P SR LIS UL SR

| AGAIIPWMRIINIPE | G PNILICINs |

T

G.2.1 Directly Assimilated Code

The Versabug Monitor/Debugger firmware is not designed to provide subrou-
tines or program sequences for user programs operating on the VMO1A. Nonetheless,
certain useful functions can be invoked by object programs by using absolute addresses
as entry points.

G.2.1.1 Display Messages on Terminal

This very useful facility is available to object programs by setting up an address
register as a pointer to the message to be displayed and executing JSR (jump to sub-
routine) instructions directly into Versabug code.

G.2.1.2 Translucent Mode — Send Messages to Host

The "TM" (transparent mode) command in Versabug allows the user to commu-
nicate with the host machine. This is accomplished by Versabug acting as an interme-
diary between the two serial ports. Information coming from port 2 (470) is sent to
port 1 (terminal) and vice versa.

By excising and modifying portions of Versabug, it is now possible for the object
program to usurp the terminal intermediary role from Versabug and to conduct a dia-
logue with the host at the object code level in the VMO1A. This mode is known as the
“translucent mode". This feature adds tremendous flexibility to the test-bed since pro—
grams can now command the 470 to do virtually anything that a human operator can
do at a terminal.

G.2.1.3 Upload Data to Host — Initiated at Object Code Level

One of the important functions of the test-bed is to display plots of the input
data and processed data. As mentioned earlier, a modification to the siandard Versa-
bug has been made to permit the user at the terminal to upload data blocks to the
host. A second subroutine extends this capability to the object program level.

G.2.1.4 Coefficient Table

The FFT program in the test-bed requires a table of coefficients in order to do
the FFT calculations. The program requires the first—quadrant values of the cosine
function based on a 256-point transform. The coefficient table is generated by a 470
Fortran program, and the outpu¢ is inserted into the MPFFT program using the CMS
editor.

- 83 -

Y VO W T PR I i U O GO PRy PR PN S Y W U I [P PR R P L AP . .

r‘r"v"r“ R
. W . P
. A
. P T

MR & A £ ACiatany ek aun g oo .
‘ ettt .
. e [¢ .

AR rroeer P —
et PR e
L) . . . '.'-] N « N .

EN A A A S B S M A A S-S I A S oat b BRI Rt Al e Seh A ek e St et BN s e

G.2.1.5 Transfer Tables

T T T T T T T

Lo

e

A technique somewhat similar to the "coefficient table' procedure was used to L
produce the "transfer tables’. Recall from Appendix D that the transfer tables are &
used to control data transfers for the multi-processor FFT demonstration program. }
However they would not be used in an operational system because of their slow speed.
The tables are generated on the 470 and stored in account DSP2 under the names: jJ

DKTBLSA DKTBLSB (8-point FFT) []
DKTBLI16A DKTBLI16B (16- " ") 1
DKTBL32A DKTBL32B B2-"") .
DKTBL64A DKTBL64B 64" ") e
DKTBLI12A DKTBLI12B (128-" ")
DKTBL25A DKTBL25B (256" ") _j

The files whose last letter is A provide only the transfer tables necessary to complete
the distributed FFT calculation. Hence, the data is left in pseudo-normal order.
These "A" files are generated as follows.

1. Create the appropriate input data in the file named FILE FT04F001. (Consult
the FORTRAN program DKMAPA to determine the necessary one line of
data).

2. Run the FORTRAN program DKMAPA which produces the output file named
FILE FTO8F001.

3. Invoke the executive program DKMKFORM which modifies FILE FT08F001
to make it have the correct format for the desired M68K source file.

4. Rename FILE FTO8F001 according to the convention described above.

5. Assemble the renamed source file to produce the object file which is used in the
final load module.

The files whose last letter is B are a superset of the "A" files in that besides the
information contained in the "A" files, the "B" files provide the extra transfer tables to
rearrange the FFT results in normal order. These files are formed by following the
same sequence of steps given above except that the FORTRAN program DKMAPB is
used in step 2.

It should be noted that the two extra transfer stages included in DKMAPB will
only rearrange into normal order the data from a four—processor FFT configuration.
If more than four processors are used DKMAPB must be modified to include the
appropriate additional transfer stages.

- 84 -

e T .y UL AP AP PP WU U S S S o R U N A S SN S ;;;J

2 3§ WY

W 3 ¢ AR

P
ko

FEi -

JEKINISINISIN . VR ANV

NG o

AT
TN

2

-
adent.

'Y

. . . v . -,
il .'ll, S Lo ¢

LED A0 Sk Sk s o
b Dttt

G.2.2 Invoked Code

The programs in this category do not execute in the VMO1A. As the demonstra—
tion program is operating in the test-bed, the invoked—code programs are operating in
the 470 host. This parallel form of system operation is made possible by the "translu-
cent mode" described above.

At the appropriate places in the processing, the TFM sends a command to the
host invoking the operation of a particular host program. The terminal output of the
host program is then displayed on the operator’s console with the demonstration pack—
age, in the translucent mode, acting as the serial port’s intermediary.

The commands to the host consist of the invocation of one of two EXEC pro-
cedures. The two EXEC procedures are called by the TFM with arguments in the
command line to specify a particular course of action for the EXEC procedure. The
two EXECs, resident in the operator’s 470 account, are called "PLOT EXEC' and
"DRAW EXEC". (The PLOT EXEC is not the host system’s same-named executive.)

G.2.2.1 PLOT EXEC

This EXEC is called in two places. First, it is called for plotting the input data
set on the terminal, and second, for plotting the output (transformed) data set on the
terminal. The distinction between which plot routine (input or output) is wanted by
the system is made by an argument in the command line sent to the 470. The com-
mand sent is either 'PLOT PLTI <CR> 4LF>’ for input data plotting or 'PLOT
PLTO <CR> 4F>’ for output data plotting. PLTI and PLTO are absolute core-im-
age files (modules) generated from two Fortran programs PLOTI and PLOTO writ-
ten for each function (input or output). Having invoked the particular plot program, it
remains for the TFM to call the "upload' subroutine to provide the data to the plot
routine and thus produce the plot on the terminal.

G.2.2.2 DRAW EXEC

In addition to plotting the input and transformed data on the terminal, the dem-
onstration program also shows a block diagram of the network configuration at vari-
ous times (see Figures 22-24). The block diagrams are created by executing the
appropriate subset of a set of fifteen programs on the host machine. These programs
are written using the language of the host’s BLOCK DIAGRAM PROGRAM. These
programs are named according to the following convention

DKFxy

where
x = one of the integers 0, 1, 2, 3, 4

y = one of the letters A, B, C

The integer specified for x indicates which processor is shown as the spare by the
block diagram. The letters A, B, and C correspond to

- 85 -

A

A : Configuration for internal butterflies (Epoch 1)
B : Configuration for external butterfly stage 1 (Epoch 2)

C : Configuration for external butterfly stage 2 (Epoch 3)

Note that the ordering of statements, while immaterial for hardcopy output, does
make a difference when viewing the output of the program on a Tektronix terminal.

The way in which the block diagram facility is invoked parallels the "PLOT"
technique describsd above. In this case the TFM sends a command line to the 470 of
the form 'DRAW DKFxy <CR> 4LF>’ where the argument DKFxy is one of the fif-
teen files just mentioned. The DRAW EXEC then calls a 470 EXEC 'BLOCK’, pass—
ing to it the argument just received from the demonstration program.

G.2.3 Utility Software

The day-to-day business of system development and enhancement was made
somewhat easier by four utility programs described below.

G.2.3.1 JDED EXEC

The # (pound sign) character in the 470 environment is defaulted to mean
’line—end’ or ’logical carriage return’. The MC68000 cross macro assembler uses the
to mean the immediate mode of addressing. The JDED EXEC changes the logical
carriage return character to the % character in the 470, so the user is free to use #
according to the assembler interpretation of that character. Additionally, JDED exec
sets tab stops and then invokes the CMS editor with a filetype of M68K and a file-
name given to it as its argument. When editing is completed the # is restored to its
usual 470 meaning.

G.2.3.2 JDMKSYS EXEC

When the user downloads the SYSTEM OBJECT file from the 470 into the
TFM private RAM and into the load-and-test memory, five distinct pieces of code
are loaded. The manager (TFM) program (JVMAN), the nodal processor program
(JVNP), and the FFT program (DKFFT), go into the managei’s giivate RAM while
the data transfer tables and modified Versabug’s RAM storage go into the load-and-
test memory. Wherever a change is made to any of the five constituent programs, a
new SYSTEM OBJECT file must be generated for downloading.

This chore is performed simply by invoking the exec file JMDKSYS which
begins by asking the user for his choice of data transfer tables and then proceeds (with
the help of the CMS editor) to create a new SYSTEM OBJECT file using the latest
version of each of the constituent elements.

- 86 -

| & gL LA] I

aT -

Y T N P T T N T S S P T S S Nt U o PO

T T T—————

G.2.3.3 SYSCLR M68K

When power is first applied to the test-bed, the parity bit in every memory loca—
tion may or may not cause a parity error during a RAM read. For this reason the
SYSCLR program is executed before the first download after a power—on. SYSCLR is
loaded into low RAM of the TFM where it proceeds to clear all of load-and-test
memory as well as the TFM RAM from location 1000 (hexadecimal) to the top of
memory. At this point system operation can safely proceed.

G.2.3.4 JDSTOPR FORTRAN

JDSTOPR is a Fortran utility program used to implement changes in the Versa—
. bug firmware (EPROMs).

."‘g'f'. s "'—I'.‘P~v“r——-{_v " T
0 .:.' ‘\. : " N

P

R4 By
e o
. .

87

AD-A138 227 A DISTRIBUTED SIGNAL PROCESSING ﬂRCHITECTURE(U)
NASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB
FILIP ET AL "12 MAY 83 TR-637 ESD-TR-82-178

UNCLASSIFIED F15628-80-C FIg 9r2

§
Fuuep

0
L]
-

-,
"
.

A a e

AN

N

AR LTLNLT

E

N
N

fle2

[
_— |.8
li2s Wis me

EFEE

FEEEEEE
N
o

er
[3
Fr

Iz
O

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

REFERENCES
1. C. Clos, "A Study of Non-Blocking Switching Networks" Bell System Technical
Journal, March, 1953, pp. 406424

2. A. V. Oppenheim, R. W. Schafer, Digital Signal Processing, Prentice—Hall,
1975, pp. 307-314.

3. V. E. Benes, "Optimal Rearrangable Multi-stage Connecting Networks,” Bell ’
System Techinal Journal, July, 1964, pp. 1641-1656.

F -3

. D. C. Opferman, N. T. Tsao-Wu, "On a Class of Rearrangable Switching Net-
works," Bell System Technical Journal, June, 1971, pp. 1579-1600.

5. D.H. Lawrie, "Access and Alignment of Data in Array Processor,” IEEE Trans.
on Computers, C-24, No. 12, December 1975, pp. 1145-1154.

(-4

. K.E. Batcher, "The Flip Network in STARAN," 1976 Int. Conf. on Parallel
Processing, August 1976, pp. 65-71.

7. M.C. Pease, '"The Indirect Binary n-Cube Microprocessor Array," IEEE Trans.
on Computers, C-26, No. S, May 1977, pp. 458-473.

. T. Feng, "Data Manipulator Functions in Parallel Processors and their Imple-
mentations,” IEEE Trans. on Computers, C-23, No. 3, March 1974, pp.
309-318.

N -]

. T. Lang and H.S. Stone, "A Shuffle-Exchange Network with Simplified Con-
trol," IEEE Trans. on Computers, C-25, No. 1, January 1976, pp. 55-64.

. 10. L.R. Goke and G.J. Lipovski, "Banyan Networks for Partitioning Multiproces—
- sor Systems," Proc. First Annual Symposium on Computer Architecture,
e December 1973, pp. 21-28.

11. C. Wu and T. Feng, "The Reverse-Exchange Interconnection Network," 1979
Conference on Parallel Processing, pp. 160-175.

12. P.G. Jansen and J.W. Kessels, "The DIMOND: A Component for the Modular *
i Construction of Switching Networks," IEEE Trans. on Computers, C-29, No.
g 10, October 1980, pp. 884—889.

“ 13. R. Rettberg, et al, "Development of a Voice Funnel System: Design Report,"
L Report No. 4098, Bolt, Beranek and Newman, Inc., August 1979.
3

14. D. Pradhan and K. Kodandapani, "A Uniform Representation of Single and
: Multistage Interconnection Networks Used in SIMD Machines," JEEE Trans.
o on Computers, C-29, No. 9, September 1980, pp. 777-791.

S IR SR
LSO Y W L W Y L)

15. D. S. Parker, "Notes on Shuffle/Exchange-Type Switching Network," JEEE
Trans. on Computers, C-29, No. 3, March 1980, pp. 213-222.

16. C. Wu and T. Feng, "On a Class of Multistage Interconnection Netorks," IEEE
Trans. on Computers, C-29, No. 8, August 1980, pp. 694-702.

. 17. H.J. Siegel and S.D. Smith, "Study of Multistage Interconnection Networks,"
< 1978 Symposium on Computer Architecture, April 1978, pp. 223-229.

18. C. Wu and T. Feng, "Routing Techniques for a Class of Multistage Intercon-
nection Networks," 1978 Conference on Parallel Processing, pp. 197-206.

19. S. Thanawastien and V.P. Nelson, "Interference Analysis of Shuffle/Exchange
- Networks," IEEE Trans. on Computers, C-30, No. 8, August 1981, pp.

F . 545-556. :

. 20. J.M. Frankovich, "Bandwidth Analysis of Butterfly Networks," Third Interns-
‘ tional Symposium on Distributed Computing Systems, 1982.

21. H.J. Siegel, "Analysis Techniques for SIMD Machine Interconnection Net-
- works and the Effects of Processor Address Mask," IEEE Trans. on Computers,
o C-26, No. 2, February, 1977, pp. 153-161.

22. A.E. Filip, G.L. Kelly, and D.E. Kirk, "Distributed FFT Algorithms with Data
Transfers Overlapping Computation," 16th Asilomar Conference on Circuits,
Systems, and Computers, November, 1982.

23. T. Bially, Private Communication.

- 24. D.B. Harris and J.H. McClellan, 'Vect.r-Radix Fast Fourier Transform,"
- IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 1977, pp.

548-551.
25. J.G. Verly, "Demo-81 Flowcharts," Private Communication, 25 May 1982.
i
Ij: 26. A.M. Pellegrini, "DISP Bus Contention Problem," Private Communication, 21 :
April 1982. :
)/
27. AM. Pellegrini, "Results of Discussion with Motorola Regarding DISP Bus .
Contention," Private Communication, 27 April 1982. !
G- 28. A M. Pellegrini, VERSAbus Arbitration Timing Analysis," Private Communica-]
:Z'_Z tion, 29 April 1982. 1
Y 29. J.G. Verly, "On the Use of the Versamodule Parallel Ports," Private Communi-
o cation, 16 June 1981. i
< 30. J.G. Verly, "Experimenting with the Versamodule Parallel Ports," Private
By Communication, 16 June 1981.

31. J.G. Verly, "On the Use of the Versamodule Programmable Timer Module,"
Private Communication, 13 July 1981.

3

.I .C _‘l .’. _‘:‘.'. 3

-89 -

Pes

LAt are

———

imer Mod-

th the Versamodule Programmable T

ting wi

cation, 31 July 1981.

rimen
ni

32. J.G. Verly, "Expe
ule,”" Private Commu

LN

4

y Gty O3

Pl T TE T TY TR Y, v TRt TR T T T e T e e T, . T W, TR R e e s R W W
T —~—r—, RS A M e ed S Kol Al "R - VL AN e A G A D O i ks i S Y .- PCE < . R
L e A S I N L T B -

UNCLASSIFIED
SECURITY CLASSIFICATION OF TS PAGE (Whon Dass Kassrod)

.'\
n REPONT DOCUMENTATION PAGE B e M
\": 1. REPORT NUMBER 2 OOVT ACCESSION 10. 3 AECIPENT'S CATALOS NUMBER
n ESD-TR-82-178 Ab -A
4 TINE (and Subsitle) §. TYPE OF REPORT & PERIOD COVERED
- Technical Report
N A Distributed Signal Processing Architecture _
Y 6. PERFORMNNG ONG. REPORT NUMBER
- Technical Report 637
7. AUTHOR(Y 5. CONTRACT OR GRANT BWIIEA(o)
Anthony E. Filip Albert H. Huntoon
James S. Arthur Donald E. Kirk F19628-80-C-0002
John D. Drinan Jacques G. Verly
i §. PEAFORMING ORGANIZATION NAME AN ADBRESS 10. PROGRAN ELEMENT, PROJECT, TASK
Lincoln Laboratory, M.L.T. AREA & WORK URNY umsoens
P.O. Box 13 Program Element No. 63428F
"R Lexington, MA 021730073 Project No. 2698
11. CONTROLLING OFFICE RAME ARD ADORESS 12. AEPORT DATE
2! Air Force Systems Command, USAF 12 May 1983
3‘ Andrews AFB 13 NUBIER OF PAGES
- Washington, DC 20331 102
14. MONITORING AGENCY RAME & ADDRESS (if different from Conirelling Office) 185. SECURITY CLASS. (of this repert)
- Electronic Systems Division Unclassified
- Hanscom AFB, MA 01731 18a. DECIASSIFICATION DOWNGRADING SCHEDULE
: 16. DISTRIBUTION STATEMENT (of this Repert)
Approved for public release; distribution unlimited.
" 17. DISTRIBUTION STATEMENT (of the abutract ensered in Block 39, if different from Report)
o 18 SUPPLENENTARY ROTES
A
- None
. 19. KEY WORDS (Continne on reverse side if nocessary and identify by block number)
::: signal processing computer architecture
distributed processing computer networks
multi-processor
X 20. BSTRALY (Continue on reverse side if nocossary and identify by block number)
- An architecture is described for a multi-processor implementation of real-time signal processiug al-
o gorithms. A “butterfly” network is used to provide simultaneous, conflict-free interprocessor communi-
N cation for multi-dimensional convolution and Fourier transformation. A hardware demonstration test-
bed using four active processors was used to validate the concepts of (1) shared algorithm execution, (2)
conflict-free data transfers, (3) distributed network control, (4) dynamic fault tolerance, and (5) identi-
] cal software in all processors,
: 00 "':n 1473 EOMON OF 1 NSV 45 1S SRSOLITE ' UNCLASSIFIED

SECURITY CLABSIFICATION OF TING PAGE (Whon Date Eamred)

C o

PaLs

1 #4

